友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载
1 711 单考数学考试大纲 一、考试内容 高等数学、线性代数 二、高等数学部分的考试大纲 (一)函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基 本初等函数的性质及其图形 初等函数 简单应用问题函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: e xx x x xx 1 1lim,1 sin lim 0 函数连续的概念 函数间断点的类型 初等函数的连续性、闭区间上连续函数的性质 考试要求 1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题的函数关系式。 2. 了解函数的有界性、单调性、周期性和奇偶性。 3. 理解复合函数及分段函数概念,了解反函数及隐函数的概念。 4. 掌握基本初等函数的性质及其图形,了解初等函数的概念。 5. 理解极限的概念,理解函数的左极限与右极限概念,以及函数极限存在与左、右极限之间的关系。 6. 掌握极限的性质及四则运算法则。 7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限的方法。 9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定 理、介值定理),并会应用这些性质。 (二)一元 函 数微 分 学 考试内容 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和 法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的 微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函 数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 考试要求 1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法 线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。 2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算 法则和一阶微分形式的不变性,会求函数的微分。 3. 了解高阶导数的概念,会求简单函数的 n 阶导数。
免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
|