欢迎访问考研秘籍考研网!    研究生招生信息网    考博真题下载    考研真题下载    全站文章索引
文章搜索   高级搜索   

 您现在的位置: 考研秘籍考研网 >> 文章中心 >> 考研复习 >> 正文  如何复习概率论中的抽样分布及参数估计

新闻资讯
普通文章 上海市50家单位网上接受咨询和报名
普通文章 北京大学生“就业之家”研究生专场招聘场面火爆
普通文章 厦大女研究生被杀案终审判决 凶手被判死刑
普通文章 广东八校网上试点考研报名将开始
普通文章 2004年硕士北京招生单位报名点一览
普通文章 洛阳高新区21名硕士研究生被聘为中层领导
普通文章 浙江省硕士研究生报名从下周一开始
普通文章 2004年上海考区网上报名时间安排表
普通文章 广东:研究生入学考试2003年起重大调整
普通文章 2004年全国研招上海考区报名点一览表
调剂信息
普通文章 宁夏大学04年硕士研究生调剂信息
普通文章 大连铁道学院04年硕士接收调剂生源基本原则
普通文章 吉林大学建设工程学院04年研究生调剂信息
普通文章 温州师范学院(温州大学筹)05研究生调剂信息
普通文章 佳木斯大学04年考研调剂信息
普通文章 沈阳建筑工程学院04年研究生调剂信息
普通文章 天津师范大学政治与行政学院05年硕士调剂需求
普通文章 第二志愿考研调剂程序答疑
普通文章 上海大学04年研究生招收统考生调剂信息
普通文章 广西大学04年硕士研究生调剂信息

友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载 

  概率论与数理统计中有两章内容,一直让很多考研学子学起来比较头疼,一是:样本及抽样分布,二是:参数估计;对这两章内容很多同学感到学习起来非常吃力,做题目时更是不知如何下手。其实这部分的知识没有大家想象的那么难,只是接触的比较少,大家只要静下心来,专心学习,在考试的时候拿下这部分的分数是非常容易的。

  统计里面第一章是关于样本及统计量的分布,这部分要求会求统计量的数字特征,要知道统计量是随机变量;另外统计量的分布及其分布参数是常考题型,常利用卡方分布, t分布及F分布的典型构成模式及其性质以及正态总体样本均值与样本方差的分布进行分析。所以复习这一章时清晰的记住上述三大分布的典型模式是我们解题的关键。关于三大分布的典型构成模式,给大家总结了四句话,有方便大家记忆:“考正态方和卡方出,卡方相除变F k若想得到t分布,一正一卡再相除”。第一个口诀的意思是标准正态分布的平方和可以生成卡方分布,而两卡方分布除以其维数之后相除可以生成F分步,第二个口诀的意思是标准正态分布和卡方分布相除可以得到t分布。只要大家记住并理解上述四句话,在遇到这方面的问题是就可以迎刃而解了;

  还有就是参数估计这章的内容,参数估计占数理统计的一多半内容,所以参数估计是重点。参数的矩估计量(值)、最大似然估计量(值)也是经常考的。很多同学遇到这样的题目,总是感觉到束手无策。题目中给出的样本值完全用不上。其实这样的题目非常简单。只要你掌握了矩估计法和最大似然估计法的原理,按照固定的程序去做就可以了。矩法的基本思想就是用样本的k阶原点矩作为总体的k阶原点矩。估计矩估计法的解题思路是:

  1)当只有一个未知参数时,我们就用样本的一阶原点矩即样本均值来估计总体的一阶原点矩即期望,解出未知参数,就是其矩估计量。

  2)如果有两个未知参数,那么除了要用一阶矩来估计外,还要用二阶矩来估计(即用样本方差去估计总体方差)。因为两个未知数,需要两个方程才能解出。解出未知参数,就是矩估计量。考纲上只要求掌握一阶、二阶矩。

  而最大似然估计法的最大困难在于正确写出似然函数,它是根据总体的分布律或密度函数写出的,只要能按照公式正确写出似然函数,然后再把似然函数中的未知参数当成变量,求出其驻点,在具体计算的时候就是在似然函数两边求对数,然后两边对参数求导,再令导数为零求参数的驻点,即为参数的最大似然估计。

  若大家理解了以上所述内容,那么统计部分的知识点就很容易掌握了,最后预祝考生考研成功!

免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨询QQ 3455265070 点击这里给我发消息 考研咨询 QQ 3455265070 点击这里给我发消息 邮箱: 3455265070@qq.com
    公司名称:昆山创酷信息科技有限公司 版权所有
    考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!