欢迎访问考研秘籍考研网!    研究生招生信息网    考博真题下载    考研真题下载    全站文章索引
文章搜索   高级搜索   

 您现在的位置: 考研秘籍考研网 >> 文章中心 >> 专业课 >> 正文  2018年云南财经大学数学分析考研大纲

新闻资讯
普通文章 上海市50家单位网上接受咨询和报名
普通文章 北京大学生“就业之家”研究生专场招聘场面火爆
普通文章 厦大女研究生被杀案终审判决 凶手被判死刑
普通文章 广东八校网上试点考研报名将开始
普通文章 2004年硕士北京招生单位报名点一览
普通文章 洛阳高新区21名硕士研究生被聘为中层领导
普通文章 浙江省硕士研究生报名从下周一开始
普通文章 2004年上海考区网上报名时间安排表
普通文章 广东:研究生入学考试2003年起重大调整
普通文章 2004年全国研招上海考区报名点一览表
调剂信息
普通文章 宁夏大学04年硕士研究生调剂信息
普通文章 大连铁道学院04年硕士接收调剂生源基本原则
普通文章 吉林大学建设工程学院04年研究生调剂信息
普通文章 温州师范学院(温州大学筹)05研究生调剂信息
普通文章 佳木斯大学04年考研调剂信息
普通文章 沈阳建筑工程学院04年研究生调剂信息
普通文章 天津师范大学政治与行政学院05年硕士调剂需求
普通文章 第二志愿考研调剂程序答疑
普通文章 上海大学04年研究生招收统考生调剂信息
普通文章 广西大学04年硕士研究生调剂信息

友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载 

1
云南财经大学硕士研究生
数学分析 入学考试大纲
本大纲适用于硕士研究生数学分析科目的入学考试,考试参考书目为:华东师
范大学数学系编,《数学分析》(上、下册),高等教育出版社,2010 年第四版和陈
纪修,於崇华,金路,《数学分析》(上、下册), 高等教育出版,2004 年,第 2 版。
数学分析的考试目的在于考察考生的抽象思维能力、逻辑推理能力、运算能力
和综合运用所学的知识分析问题和解决问题的能力,由此来达到判断考生是否具有
进一步深造的基本素质和培养潜力。
考试内容和考试要求
(一)考试内容
1. 分析基础
(1) 实数概念、确界
(2)函数概念
(3) 序列极限与函数极限
(4) 无穷大与无穷小
(5)上极限与下极限
(6) 连续概念及基本性质,一致连续性
(7)收敛原理
2. 一元微分学
(1) 导数概念及几何意义
(2) 求导公式求导法则
(3) 高阶导数
(4) 微分
(5) 微分中值定理
(6) L’Hospital 法则
(7) Taylor 公式
(8) 应用导数研究函数
3. 一元积分学
(1) 不定积分法与可积函数类
(2) 定积分的概念、性质与计算
(3) 定积分的应用
(4) 广义积分
4. 级数
(1) 数项级数的敛散判别与性质
(2) 函数项级数与一致收敛性
2
(3) 幂级数
(4) Fourier 级数
5. 多元微分学
(1) 欧氏空间
(2) 多元函数的极限
(3) 多元连续函数
(4) 偏导数与微分
(5) 隐函数定理
(6) Taylor 公式
(7) 多元微分学的几何应用
(8) 多元函数的极值
6. 多元积分学
(1) 重积分的概念与性质
(2)重积分的计算
(3)二重、三重广义积分
(4)含参变量的正常积分和广义积分
(5)曲线积分与 Green 公式
(6)曲面积分
(7)Gauss 公式、Stokes 公式及线积分与路径无关
(8)场论初步
(二)考试要求
1.分析基础
(1) 了解实数公理,理解上确界和下确界的意义。掌握绝对值不等式及平均值不
等式。
(2) 熟练掌握函数概念(如定义域、值域、反函数等)。
(3) 掌握序列极限的意义、性质(特别,单调序列的极限存在性定理)和运算法
则,熟练掌握求序列极限的 N 方法。
(4) 掌握函数极限的意义、性质和运算法则(自变量趋于有限数和趋于无限两种
情形),熟练掌握求函数极限的   方法,了解广义极限和单侧极限的意义。
(5) 熟练掌握求序列极限和函数极限的常用方法(如初等变形、变量代换、两边
夹法则等),掌握由递推公式给出的序列求极限的基本技巧,以及应用 Stolz
公式求序列极限的方法。
(6) 理解无穷大量和无穷小量的意义,了解同阶和高(低)阶无穷大(小)量的
意义。
(7) 了解上极限和下极限的意义和性质。
(8) 熟练掌握函数在一点及在一个区间上连续的概念,理解函数两类间断点的意
义,掌握初等函数的连续性,理解区间套定理和介值定理。理解一致连续和
不一致连续的概念。
(9) 掌握序列收敛的充分必要条件及函数极限(当自变量趋于有限数及趋于无穷
两种情形)存在的充分必要条件。
2.一元微分学
(1) 掌握导数的概念和几何意义,了解单侧导数的意义,依据定义能求函数在给
3
定点的导数。
(2) 应用求导公式和法则熟练计算函数导数(包括用参数式给出的函数的导数)、
隐函数的导数以及函数的高阶导数。
(3) 理解函数微分的概念和函数可微的充分必要条件,了解一阶微分的不变性,
能利用微分作近似计算。
(4) 理解并掌握微分中值定理(Rolle 定理,Lagrange 定理和 Cauchy 中值定理),
并能应用它们解决函数零点存在性及不等式证明等问题。
(5) 熟练掌握应用 L’Hospital 法则求函数极限的方法。
(6) 理解 Taylor 公式(Lagrange 余项和 Peano 余项)的意义,并熟记五个基本公
式( )1ln(,)1(,cos,sin xxxxe
x


, 在 x=0 点的带有 Peano 余项和 Lagrange
余项的 Taylor 公式),能将给定函数在指定点展成 Taylor 级数,掌握应用 Taylor
公式解决不等式证明、求函数极限等问题的基本技巧。
(7) 熟练掌握应用导数判断函数的单调性、凹凸性以及画出函数图像的方法,以
及求一元函数极值和最值的方法。
3.一元积分学
(1) 理解不定积分概念和基本性质,熟记基本积分表,理解并掌握换元法和分部
积分法的意义和方法,并能应用他们熟练计算不复杂的不定积分。
(2) 了解可积分函数类的意义及其积分法,熟练掌握有理函数、三角函数有理式
及简单的根式的有理式的积分方法。
(3) 理解定积分的概念,掌握定积分的基本性质及函数在有限区间上可积的充分
必要条件,熟练掌握定积分的计算方法。了解变限定积分的性质,掌握积分
中值定理。
(4) 熟练应用定积分计算平面曲线弧长、平面图形面积、立体体积、旋转曲面表
面积,并应用于求均匀平面图形重心坐标等简单物理、力学问题。
(5) 理解广义积分及其收敛、绝对收敛和发散的意义,掌握广义积分收敛的判定
法则。
4.级数
(1) 掌握数项级数收敛、发散和绝对收敛的概念、级数收敛的充分必要条件
(Cauchy 准则),收敛和绝对收敛级数的性质以及级数加法和乘法的运算法
则。
(2) 熟练掌握正项级数敛散判别法(比较判别法、D’Alembert 判别法、Cauchy 根
式判别法以及 Cauchy 积分判别法),掌握一般项级数敛散判别方法。能计算
一些特殊数项级数的和。
(3) 理解函数项级数收敛的意义并能确定其收敛域。理解函数序列一致收敛以及
函数项级数一致收敛的意义,掌握函数项级数一致收敛的判别法则(Cauchy
一致收敛准则,Weierstrass 判别法,Abel 判别法,Dirichlet 判别法)及一致收
敛级数的性质。
(4) 理解幂级数的概念并能确定其收敛半径。掌握幂级数的基本性质和运算法则,
熟记五个基本幂级数展开式( )1ln(,)1(,cos,sin xxxxe
x


, )。能求出给
定函数在指定点的幂级数展开式及应用幂级数运算求一些级数的和。
4
(5) 理解函数 Fourier 展开式的意义,掌握求 Fourier 展开式的基本方法。了解
Fourier 级数的收敛性定理、逐项积分和逐项求导定理以及 Parseval 等式,并
能应用 Fourier 级数求某些级数的和(例如

1
2
1
n n
)。
5.多元微分学
(1) 理解欧氏空间的概念及欧氏空间中向量的内积与模、开集与闭集、开区域与
闭区域的意义,了解完备性定理及紧性定理。
(2) 理解多元函数的概念。掌握多元函数的全面极限、累次极限和特殊路径极限的
意义,并能根据定义计算多元函数极限,或证明二元极限不存在,能计算多
元函数的全面极限和累次极限。
(3) 理解多元连续函数的概念,掌握其性质,并能判断多元函数的连续性。了解多
元函数的一致连续性。
(4) 理解偏导数的概念,掌握其计算法则,能熟练计算函数的偏导数和复合函数的
导函数,能计算函数在给定方向上的导函数。
(5) 理解多元函数的微分的概念,并能判断函数的可微性。
(6) 理解隐函数存在定理和反函数存在定理,熟练掌握隐函数的微分法。
(7) 理解 Taylor 公式的意义,并能求出二元函数的具有指定阶数的 Taylor 公式。
(8) 能应用偏导数求空间曲线的切线、法平面及空间曲面的法线和切平面的方程。
(9) 理解多元函数的极限和最值的意义、极值的必要条件和充分条件,掌握求多元
函数极值、条件极值及在闭区域上的最值的方法,并用于解决实际问题。
6.多元积分学
(1) 理解重积分的概念、可积的充分必要条件及重积分的性质。
(2) 掌握二重积分和三重积分化累次积分的方法以及二重、三重积分的变量代换
方法(特别,平面极坐标变换,空间柱坐标和球坐标变换),能熟练计算二重
和三重积分,并用于计算平面图形面积、柱体体积、曲面面积及曲面所围的
立体体积。了解 n 重(n>3)积分的计算方法(化为累次积分及变量代换)。
(3) 了解二重、三重广义积分的意义(无界域情形和不连续函数情形),掌握它们
的基本判敛法和基本计算方法。
(4) 了解含参变量的正常积分的基本性质(连续性,积分号下取极限、求导和求
积分),了解含参变量的广义积分一致收敛性的意义及其基本性质(连续性,
积分号下取极限、求导及求积分),掌握其一致收敛判别法,了解  和 函数。
(5) 理解第一型和第二型曲线积分的意义、性质、实际背景及二者的联系,能熟
练计算曲线积分。
(6) 理解并掌握 Green 公式的意义,并能应用它计算曲线积分。
(7) 理解第一型和第二型曲面积分的意义、性质、实际背景及二者的联系,能熟
练计算曲面积分。
(8) 理解并掌握 Gauss 公式和 Stokes 公式的意义,并能用于曲面积分或曲线积分
的计算。了解空间曲线积分与路径无关的充分必要条件及其对曲线积分计算
的应用。

免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨询QQ 3455265070 点击这里给我发消息 考研咨询 QQ 3455265070 点击这里给我发消息 邮箱: 3455265070@qq.com
    公司名称:昆山创酷信息科技有限公司 版权所有
    考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!