欢迎访问考研秘籍考研网!    研究生招生信息网    考博真题下载    考研真题下载    全站文章索引
文章搜索   高级搜索   

 您现在的位置: 考研秘籍考研网 >> 文章中心 >> 专业课 >> 正文  2017年浙江理工大学601数学分析考研大纲

新闻资讯
普通文章 上海市50家单位网上接受咨询和报名
普通文章 北京大学生“就业之家”研究生专场招聘场面火爆
普通文章 厦大女研究生被杀案终审判决 凶手被判死刑
普通文章 广东八校网上试点考研报名将开始
普通文章 2004年硕士北京招生单位报名点一览
普通文章 洛阳高新区21名硕士研究生被聘为中层领导
普通文章 浙江省硕士研究生报名从下周一开始
普通文章 2004年上海考区网上报名时间安排表
普通文章 广东:研究生入学考试2003年起重大调整
普通文章 2004年全国研招上海考区报名点一览表
调剂信息
普通文章 宁夏大学04年硕士研究生调剂信息
普通文章 大连铁道学院04年硕士接收调剂生源基本原则
普通文章 吉林大学建设工程学院04年研究生调剂信息
普通文章 温州师范学院(温州大学筹)05研究生调剂信息
普通文章 佳木斯大学04年考研调剂信息
普通文章 沈阳建筑工程学院04年研究生调剂信息
普通文章 天津师范大学政治与行政学院05年硕士调剂需求
普通文章 第二志愿考研调剂程序答疑
普通文章 上海大学04年研究生招收统考生调剂信息
普通文章 广西大学04年硕士研究生调剂信息

友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载 

第 1 页,共 4 页
浙 江 理 工 大 学
2017 年硕士学位研究生招生考试业务课考试大纲
考试科目: 数学分析 代码: 601
考试基本要求
考察考生掌握《数学分析》的基本内容和方法的熟练程度。
考试基本内容
第一章 实数集与函数
1实数:实数及性质;绝对值与不等式.
2数集 确界原理:区间与邻域;有界集与无界集;上确界与下确界,确界原理.
3函数概念:函数定义;函数的几种常用表示;函数四则运算;复合函数;反函数;初等函数.
4具有某些特征的函数:有界函数,无界函数;单调函数,单调递增(减)函数,严格单调函
数,单调函数与反函数;奇函数与偶函数;周期函数,基本周期.
第二章 数列极限
1极限概念:数列,通项;数列极限定义,数列的收敛与发散性;无穷小数列.
2收敛数列的性质:唯一性;有界性;保号性;保不等式性;迫敛性;四则运算;归结原则.
3数列极限存在的条件:单调有界定理;柯西收敛准则.
第三章 函数极限
1函数极限的概念:函数极限的几种形式;左、右极限.
2函数极限的性质:唯一性;局部有界性;局部保号性;保不等式性;迫敛性;四则运算.
3函数极限存在的条件:归结原则(Heine定理);柯西准则.
4两个重要极限: 1
sin
lim
0

 x
x
x
; e
x
x
x








1
1lim .
5无穷小量与无穷大量:无穷小量与阶的比较、高阶无穷小量、同阶无穷小量、等价无穷小
量;无穷大量;曲线的渐近线(斜渐近线、水平渐近线与垂直渐近线).
第四章 函数连续
1函数连续性概念:函数的点连续性、左(右)连续性概念与极限之间的关系;间断点及其分
类[第一类间断点(可去间断点,跳跃间断点),第二类间断点];区间上的连续函数.
2连续函数的性质:连续函数的的局部性质(局部有界性、局部保号性、四则运算、复合函
数的连续性);有界闭区间上连续函数的基本性质(有界性定理、最值定理、介值性定理、根
的存在定理、一致连续性定理);反函数的连续性.
3初等函数的连续性:基本初等函数的连续性;初等函数的连续性.
第五章 导数与微分
1导数概念:导数定义、单侧导数;导函数;导数的几何意义.
2求导法则:导数的四则运算;反函数导数;复合函数的导数(链式法则、对数求导法);
基本导数法则与公式.
3参变量函数的导数.
4高阶导数:莱布尼茨公式.
5微分:微分的概念;微分运算法则;高阶微分;微分在近似计算中的应用.
第六章 微分中值定理及其应用
1拉格朗日中值定理和函数的单调性:罗尔定理与拉格朗日定理;单调函数.
第 2 页,共 4 页
2柯西中值定理和不定式极限:柯西中值定理;不定式的极限.
3泰勒公式:带有佩亚诺余项的泰勒公式;带有拉格朗日余项的泰勒公式;在近似计算上的
应用.
4函数的极值与最值:极值判别;最大值与最小值.
5函数的凸性与拐点:凸函数与凹函数;严格凸函数与严格凹函数;拐点.
6函数作图:函数作图的一般程序.
7方程的近似解:牛顿切线法.
第七章 实数完备性
1实数完备性六个等价定理:闭区间套与闭区间套定理;聚点与聚点定理;有限覆盖与有限
覆盖定理;确界定理;单调有界定理;柯西收敛准则.
2闭区间上连续函数整体性质的证明:有界性定理;最大、最小值定理;介值定理;一致连
续性定理.
3上极限与下极限:最小聚点与下极限;最大聚点与上极限.
第八章 不定积分
1不定积分概念与基本积分公式:原函数与不定积分;基本积分表;不定积分的线性运算法则.
2换元积分法与分部积分法:第一换元法与第二换元法;分部积分法.
3有理函数和可化为有理函数的不定积分:有理函数的积分;部分分式;几类可化为有理函
数的积分.
第九章 定积分
1定积分的概念:问题的提出;定积分的定义.
2牛顿—莱布尼兹公式.
3可积条件:可积的必要条件;达布上(下)和;上积分与下积分;可积的充要条件;可积
函数类.
4定积分的性质:定积分的基本性质;积分(第一)中值定理.
5微积分学基本定理 定积分计算(续):变限积分与原函数的存在性;积分(第二)中值定
理;定积分的换元积分法和分部积分法.
第十章 定积分的应用:微元法;平面图形面积计算;已知平行截面面积求体积;平面曲线弧长
与曲率;旋转曲面的面积;定积分在物理中的某些应用(液体静压力、引力、功与平均功率等).
第十一章 反常积分
1反常积分概念:无穷限反常积分与收敛的定义;瑕点;无界函数反常积分(瑕积分)与收
敛的定义.
2无穷限反常积分的性质与收敛判别:无穷限反常积分的性质;绝对收敛与条件收敛;比较
法则;柯西判别法;狄利克雷判别法;阿贝尔判别法.
3瑕积分的性质与收敛判别:瑕积分的性质;绝对收敛与条件收敛;比较法则;柯西判别法;
狄利克雷判别法;阿贝尔判别法.
第十二章 数项级数
1级数的敛散性:数项级数敛散性概念;级数收敛的柯西收敛准则与收敛级数的若干性质.
2正项级数:正项级数收敛性的一般判别原则;比式判别法与根式判别法;积分判别法与拉
贝判别法.
3一般项级数:交错级数与莱布尼兹判别法;绝对收敛级数与条件收敛级数及其性质;阿贝
尔判别法与狄利克雷判别法.
第十三章 函数列与函数项级数
1一致收敛性:函数列及其一致收敛性概念与判别法;函数项级数及其一致收敛概念与判别
法.
2一致收敛的函数列与函数项级数的性质:连续性;可微(导)性;可积性.
第十四章 幂级数
1幂级数:幂级数的收敛半径、收敛区间与收敛域;幂级数的性质;幂级数和函数的连续性、
第 3 页,共 4 页
逐项可导(微)、逐项可积问题.
2函数的幂级数展开:泰勒级数(麦克劳林级数);几种常见初等函数的幂级数展开.
3欧拉公式.
第十五章 傅里叶级数
1傅里叶级数:三角函数与正交函数系;傅里叶级数与傅里叶系数;以 2 为周期函数的傅里
叶级数;收敛定理;周期延拓;奇延拓与偶延拓;正弦级数与余弦级数.
2以 l2 为周期的函数的展开式:以 l2 为周期的函数的傅里叶级数;奇函数与偶函数的傅里叶
级数.
3收敛定理的证明.
第十六章 多元函数极限与连续
1平面点集与多元函数:平面点集与平面点集的完备性定理;二元函数的概念;多元函数的
概念.
2二元函数的极限:二元函数极限概念;二元函数极限判别法与累次极限.
3二元函数的连续性:二元函数连续性概念及其性质;全增量与偏增量;有界闭域上连续函数
的整体性质.
第十七章 多元函数的微分学
1可微性:可微性与全微分;偏导数;可微性条件;切平面的定义;可微性几何意义及其应
用;近似计算.
2多元复合函数微分法:多元复合函数求导法则;链式法则;多元复合函数的全微分.
3方向导数与梯度.
4泰勒定理与极值问题:高阶偏导数;多元函数的中值定理与泰勒公式;极值问题;黑赛(Hesse)
矩阵.
第十八章 隐函数定理及其应用
1隐函数:隐函数概念;隐函数存在性与可微性定理;反函数存在定理.
2隐函数组:隐函数组定理;反函数组与坐标变换;雅可比(Jacobi)行列式.
3隐函数(组)定理的应用:平面曲线的切线与法线;空间曲线的切线与法平面;曲面的切
平面与法线.
4条件极值与拉格朗日乘数法.
第十九章 含参量积分
1含参量正常积分:含参量正常积分的概念;连续性、可微性与可积性问题.
2含参量反常积分:一致收敛性及其判别法;含参量反常积分的性质(连续性、可微性与可
积性).
3欧拉积分:  函数及其性质; 函数及其性质.
第二十章 曲线积分
1第一型曲线积分:第一型曲线积分的定义及其性质、计算.
2第二型曲线积分:第二型曲线积分概念及性质、计算.
3两类曲线积分的联系.
第二十一章 重积分
1二重积分概念:平面图形的面积;二重积分的定义及其存在性;二重积分的性质.
2二重积分的计算:二重积分与累次积分;换元积分法(极坐标变换与一般变换).
3格林公式 曲线积分与路径无关性.
4三重积分:三重积分的概念;三重积分计算、三重积分与累次积分;三重积分换元积分法:
柱坐标变换,球坐标变换与一般坐标变换.
5重积分应用:曲面的面积;重心坐标;转动惯量.
第二十二章 曲面积分
1第一型曲面积分:第一型曲面积分的概念与计算.
2第二型曲面积分:曲面的侧;第二型曲面积分的概念与计算.
第 4 页,共 4 页
3高斯公式与斯托克斯公式.
4场论初步:场的概念;梯度场;散度场;旋度场.
题型及分布
计算题 约 50%
证明题与概念题 约 50%
教材(主要参考书)、编著者或出版社:
《数学分析》(上、下册),华东师范大学数学系编,高等教育出版社,第 4 版,2010 年

免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨询QQ 3455265070 点击这里给我发消息 考研咨询 QQ 3455265070 点击这里给我发消息 邮箱: 3455265070@qq.com
    公司名称:昆山创酷信息科技有限公司 版权所有
    考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!