友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载
湖南师范大学硕士研究生入学考试自命题考试大纲 考试科目代码:[841] 考试科目名称:高等代数 一、试卷结构 1) 试卷成绩及考试时间 本试卷满分为 150 分,考试时间为 180 分钟。 2)答题方式:闭卷、笔试。 3)试卷内容结构 北京大学数学系所编的高等代数第一章至第九章。 4)题型结构 a: 填空题,5 小题,每小题 6 分,共 30 分; b: 计算题,4 小题,每小题 15 分,共 60 分; c: 证明题,4 小题,每小题 15 分,共 60 分。 二、考试内容与考试要求 1、多项式 考试内容 数域,一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多 项式函数,复系数与实系数多项式的因式分解,有理系数多项式,多元多项式。 考试要求 (1)掌握数域的定义,并会判断一个代数系统是否是数域。 (2)正确理解数域 P 上一元多项式的定义,多项式相乘,次数,一元多项 式环等概念。掌握多项式的运算及运算律。 (3)正确理解整除的定义,熟练掌握带余除法及整除的性质。 (4)正确理解和掌握两个(或若干个)多项式的最大公因式,互素等概念 及性质。能用辗转相除法求两个多项式的最大公因式。 (5)正确理解和掌握不可约多项式的定义及性质。了解因式分解定理。 (6)正确理解和掌握 k 重因式的定义。 (7)掌握多项式函数的概念,余数定理,多项式的根及性质。正确理解多 项式与多项式函数的关系。 (8)理解代数基本定理。熟练掌握复(实)系数多项式分解定理及标准分 解式。 (9)正确理解和掌握本原多项式的定义及性质。掌握整系数多项式的有理 根的计算。 (10)了解多元多项式的基本概念。 2、行列式 考试内容 排列,n 级行列式的定义,n 级行列式的性质,n 级行列式的展开,行列式 的计算,克拉默(Cramer)法则,拉普拉斯(Laplace)定理,行列式的乘法规则。 考试要求 (1)理解并掌握排列、逆序、逆序数、奇偶排列的定义。掌握排列的奇偶 性与对换的关系。 (2)深刻理解和掌握 n 级行列式的定义,并能用定义计算一些特殊行列式。 (3)熟练掌握行列式的基本性质。 (4)正确理解矩阵、矩阵的行列式、矩阵的初等变换等概念,能利用行列 式性质计算一些简单行列式。 (5)正确理解元素的余子式、代数余子式等概念。熟练掌握行列式按一行 (列)展开的公式。掌握计算行列式的基本方法与技巧。 (6)熟练掌握克拉默(Cramer)法则, (7)了解拉普拉斯(Laplace)定理,能初步利用行列式的乘法规则解决简单的 问题。 3、线性方程组 考试内容 消元法,n 维向量空间,线性相关性,矩阵的秩,线性方程组有解判别定理, 线性方程组解的结构。 考试要求
免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
|