欢迎访问考研秘籍考研网!    研究生招生信息网    考博真题下载    考研真题下载    全站文章索引
文章搜索   高级搜索   

 您现在的位置: 考研秘籍考研网 >> 文章中心 >> 专业课 >> 正文  2019年昆明理工大学617数学分析考试大纲考研大纲

新闻资讯
普通文章 上海市50家单位网上接受咨询和报名
普通文章 北京大学生“就业之家”研究生专场招聘场面火爆
普通文章 厦大女研究生被杀案终审判决 凶手被判死刑
普通文章 广东八校网上试点考研报名将开始
普通文章 2004年硕士北京招生单位报名点一览
普通文章 洛阳高新区21名硕士研究生被聘为中层领导
普通文章 浙江省硕士研究生报名从下周一开始
普通文章 2004年上海考区网上报名时间安排表
普通文章 广东:研究生入学考试2003年起重大调整
普通文章 2004年全国研招上海考区报名点一览表
调剂信息
普通文章 宁夏大学04年硕士研究生调剂信息
普通文章 大连铁道学院04年硕士接收调剂生源基本原则
普通文章 吉林大学建设工程学院04年研究生调剂信息
普通文章 温州师范学院(温州大学筹)05研究生调剂信息
普通文章 佳木斯大学04年考研调剂信息
普通文章 沈阳建筑工程学院04年研究生调剂信息
普通文章 天津师范大学政治与行政学院05年硕士调剂需求
普通文章 第二志愿考研调剂程序答疑
普通文章 上海大学04年研究生招收统考生调剂信息
普通文章 广西大学04年硕士研究生调剂信息

友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载 

昆明理工大学硕士研究生入学考试《数学分析》考试大纲
第一部分 考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为 150 分,考试时间为 180 分钟.
二、答题方式
答题方式为闭卷、笔试.
三、试卷的内容结构
极限论 约占 20%
单变量微积分学 约占 30%
多变量微积分学 约占 30%
级数论 约占 20%
四、试卷的题型结构
计算题 约 75 分
证明题 约 60 分
综合题 约 15 分
合计 150 分
第二部分 考察的知识及范围
一、极限论
(1)掌握数列极限,函数极限定义,会用数列极限、函数极限
的定义证明有关极限问题;掌握函数有界、无界的定义,并会用其证
明给定函数在给定区间上的有界性、无界性;掌握实数集上、下确界
的定义。
(2)掌握收敛数列的性质及运算,掌握单调有界数列收敛定理、
迫敛性法则、柯西收敛原理、归结原则及应用;掌握函数极限的性质
及运算,会用两个重要极限来处理极限问题。
(3)掌握无穷小量和无穷大量的定义、性质和关系;掌握无穷
小量阶的比较。
(4)理解和掌握连续函数的定义和运算,解决有关函数连续性
问题;掌握不连续点的类型;掌握单侧极限的概念。
(5)掌握和应用闭区间上连续函数的性质(最大最小值性、有
界性、介值性、一致连续性);掌握初等函数的连续性,理解复合函
数的连续性,反函数的连续性。
(6)掌握实数连续性定理:闭区间套定理、单调有界定理、柯
西收敛准则、确界存在定理、聚点定理、有限覆盖定理。
(7)理解平面点集的基本概念,了解矩形套定理,致密性定理、
有限覆盖定理;掌握二元函数的极限,二次极限,连续性概念及计算;
掌握有界闭区域上多元连续函数的性质。
二、单变量微积分学
(1)理解和掌握导数与微分概念和几何意义;能熟练地运用导
数的运算性质和求导法则求函数的导数(特别是复合函数)。
(2)理解可导性、连续性与可微性的关系;掌握导数的几何应
用,微分在近似计算中的应用;掌握高阶导数的求法。
(3)掌握中值定理的内容、证明及其应用;能熟练地运用罗必
达法则求不定式的极限;掌握泰勒公式并能应用其解决近似计算、求
极限等相关问题。
(4)掌握函数图形特征(单调性、极值与最值、凹凸性、拐点及
渐近线)的判定及描绘函数图形。
(5)掌握原函数和不定积分概念;熟练掌握换元积分法、分部
积分法、有理式积分法和三角有理式积分法,并能利用它们来求函数
的积分;会计算简单的无理函数的积分。
(6)理解定积分概念,掌握函数可积的条件;熟悉一些可积分
函数类; 掌握定积分与可变上限积分的性质;能较好地运用牛顿-
莱布尼兹公式,换元积分法,分部积分法计算定积分。
(7)掌握定积分的几何应用;掌握定积分在物理上的应用;掌
握"微元法"。
(8)掌握广义积分的收敛、发散、绝对收敛与条件收敛等概念;.
能用收敛性判别法判断某些反常积分的收敛性。
(9)掌握含参变量定积分的性质及计算。
三、 多变量微积分学
(1)掌握偏导数、全微分、方向导数、高阶偏导数、高阶全微
分等概念;了解多元函数可微、可导及连续的关系;掌握复合函数、
隐函数的求导法则、由方程(组)所确定的函数的求导法则。
(2)掌握隐函数的存在性定理;会求曲线的切线方程和法平面
方程,曲面的切平面方程和法线方程;会求多元函数的极值(条件极
值和无条件极值)。
(3)掌握二重、三重积分的概念和性质;会计算重积分;会求
图形的面积,体积。
(4)掌握两类曲线积分的概念及计算;掌握两类曲线积分的性
质;掌握两类曲线积分的关系;掌握 Green 公式并会用其计算有关积
分 。
(5)掌握两类曲面积分的概念及计算;掌握两类曲面积分的性
质; 掌握两类曲面积分之间的关系;掌握 Gauss 公式、Stokes 公式
并会用其计算有关积分 。
四、级数论
(1)理解数项级数的收敛,发散,绝对收敛与条件收敛等概念;
掌握数项级数的基本性质;熟练应用正项级数敛散性判别法(比较判
别法、比式判别法、根式判别法和积分判别法)与任意项级数的敛散
性判别法判断级数的敛散性;能熟练应用几何级数、调和级数与 p 级
数的敛散性。
(2)掌握函数项级数(函数序列)收敛及一致收敛性概念;掌握
一致收敛级数的性质,能够比较熟练地运用判断一致收敛性的判别法
(Cauchy 收敛准则, Weierstrass 判别法,Abel 判别法和 Dirichl
et 判别法)判断函数项级数(函数序列)的一致收敛性。
(3)掌握幂级数,收敛半径、收敛域、和函数等概念;会求幂级
数的收敛半径和收敛域;掌握幂级数的性质并能求和函数;会把函数
展开成幂级数。
(4)掌握三角函数系的正交性与周期函数的 Fourier 级数的概念和
性质;掌握 Fourier 级数收敛性判别法;能将函数展开成 Fourier 级数。

免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨询QQ 3455265070 点击这里给我发消息 考研咨询 QQ 3455265070 点击这里给我发消息 邮箱: 3455265070@qq.com
    公司名称:昆山创酷信息科技有限公司 版权所有
    考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!