欢迎访问考研秘籍考研网!    研究生招生信息网    考博真题下载    考研真题下载    全站文章索引
文章搜索   高级搜索   

 您现在的位置: 考研秘籍考研网 >> 文章中心 >> 专业课 >> 正文  2018年天津理工大学803数学分析考研大纲

新闻资讯
普通文章 上海市50家单位网上接受咨询和报名
普通文章 北京大学生“就业之家”研究生专场招聘场面火爆
普通文章 厦大女研究生被杀案终审判决 凶手被判死刑
普通文章 广东八校网上试点考研报名将开始
普通文章 2004年硕士北京招生单位报名点一览
普通文章 洛阳高新区21名硕士研究生被聘为中层领导
普通文章 浙江省硕士研究生报名从下周一开始
普通文章 2004年上海考区网上报名时间安排表
普通文章 广东:研究生入学考试2003年起重大调整
普通文章 2004年全国研招上海考区报名点一览表
调剂信息
普通文章 宁夏大学04年硕士研究生调剂信息
普通文章 大连铁道学院04年硕士接收调剂生源基本原则
普通文章 吉林大学建设工程学院04年研究生调剂信息
普通文章 温州师范学院(温州大学筹)05研究生调剂信息
普通文章 佳木斯大学04年考研调剂信息
普通文章 沈阳建筑工程学院04年研究生调剂信息
普通文章 天津师范大学政治与行政学院05年硕士调剂需求
普通文章 第二志愿考研调剂程序答疑
普通文章 上海大学04年研究生招收统考生调剂信息
普通文章 广西大学04年硕士研究生调剂信息

友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载 

1
天津理工大学 2018 年硕士研究生入学考试大纲
一、 考试科目:数学分析(803)
二、 考试方式:考试采用笔试方式。考试时间为 180 分钟,试卷满分为 150 分。
三、 试卷结构与分数比重:
试卷共分为四部分
一、 填空题
二、 选择题
三、 计算题
四、 证明题
四、考查的知识范围:
第二章
1、数列的极限。2、函数的根限。
3、函数的连续性。4、无穷小与无穷大。
基本要求:
(1)掌握极限的定义,会用ε ——N,ε —δ 语言证明极限存在。
(2)会求极限,掌握关于极限的性质。
(3)掌握函数连续的概念,会判断函数的连续性,会判断间断点及类型,熟悉连续函数
的运算性质和局部性质。
(4)会比较无穷小的阶,并会使用等价无穷小求极限。
(5)熟悉闭区间上连续函数的性质。
第三章 实数连续性定理
1、实数连续性的基本定理。
2、闭区间上连续函数性质的证明。
基本要求:
(1)熟悉六个实数连续性定理的条件与结论,这六个定理是:单调有界数列必有极限,
确界原理,闭区间套定理,有界无穷数列必有收敛子列,有限覆盖定理,cauchy 收敛准则。
(2)了解六个定理之间的逻辑关系。
(3)掌握函数一致连续的概念。
(4)掌握闭区间上连续函数的性质,并会使用这些性质证明一些较简单的命题。
(5)熟悉闭区间上连续函数性质的证明过程。
第四章 导数与微分
1、函数导数的定义与求导公式。
2、求导法则:
(1)四则运算法则,(2)复合函数求导法则。
2
(3)隐函数及参数分程表示的函数的求导法则。
3、高阶导数
4、微分及其运算
基本要求
(1)掌握导数,左、右导数的定义,会用左、右导数求导数或证明导数的存在。
(2)熟练掌握求导法则,会求导数,包含高阶导数。
(3)理解导数与微分之间的关系,会求微分。
第五章 微分中值定理及其应用
1、中值定理。2、泰勒公式。
3、函数的单调性,凸性,极值。
4、L’Hospital 法则。
基本要求:
(1)掌握三个中值定理特别是拉格朗日中值定理的应用。
(2)熟悉泰勒公式及其余项的两种形式:拉格朗日余项和皮亚诺余项。
(3)会利用导数判断函数的单调性,凸性,求拐点。
(4)会求函数的极值,最值。
(5)会使用 L’Hospital 法则求极限。
第六章 不定积分
1、不定积分的概念与运算法则。
2、不定积分的计算。
基本要求:
(1)熟练运用积分公式。
(2)掌握换元积分法,分部积分法。
(3)掌握有理函数积分法,简单有理函数和三角有理式的积分法。
第七章 定积分
1、定积分的概念。2、定积分的可积性质。
3、定积分的性质。4、定积分的计算。
基本要求:
(1)掌握定积分的定义。
(2)会运用定积分的性质,特别是变限函数性质的应用。
(3)会计算定积分(N——L 公式,换元积分与分部积分等)。
第八章 定积分的应用
1、平面图形面积的计算。
2、曲线的孤长。
3、体积的计算:旋转体, 截面面积已知。
4、旋转曲面的侧面积。
5、平均值。
下册
3
第九章 数项级数
1、数项级数的收敛性和基本性质。2、正项级数。
3、任意项级数。4、绝对收敛级数和条件收敛级数的性质。
基本要求:
(1)掌握收敛级数的基本性质和 Cauchy 收敛准则。
(2)掌握一般项级数收敛的以下的判断法:收敛的充要条件,比较判断法,比值判别法,
根式判别法,积分判别法,掌握交错级数收敛的判别法,任意级数转化为正项级数的判别法,
掌握狄利克莱,阿贝尔判别法。
(4)了解绝对收敛级数,条件收敛级数的性质。
第十章 广义积分
1、无穷限的广义积分。
2、无界函数的广义积分。
基本要求:
(1)广义积分的计算。
(2)掌握广义积分收敛的判别法。
第十一章 函数项级数
1、函数项级数的收敛和一致收敛。
2、幂级数的收敛区间,和函数。
3、将函数展成幂级数。
基本要求:(1)掌握函数项级数的一致收敛性的概念,会判断一致收敛,主要是 M——
判别法。
(2)掌握一致收敛的函数项级数的三个分析性质:逐项微分、逐项积分、函数的连续性。
(3)会求幂级数的收敛半径,收敛区域。
(4)会求和函数以及将函数展成幂级数。
第十二章 Fourier 级数
1、函数展成 Fourier 级数。2、Fourier 级数的收敛性。
基本要求:
(1)会求周期为 2T 的函数的 Fourier 级数。
(2)会将定义于[O、T]的函数展成正弦级数或余弦级数。
(3)掌握函数 f(x)的 Fourier 级数的收敛性定理。
第十三章 多元函数的极限与连续
1、平面点集。2、多元函数的极限。
3、多元函数的连续。
基本要求:
(1)熟悉距离,邻域,聚点、内点、开集、闭集、区域的概念。
(2)了解平面点集连续性定理。
(3)掌握多元函数极限的概念(主要是二元函数的极限),熟悉重极限与累次极限的关
系。
4
(4)熟悉多元函数连续的概念,掌握极限的运算法则,连续函数的局部性质。
(5)熟悉有界闭区域连续函数的性质。
第十四章 偏导数和含微分
1、偏导数和全微分的概念。
2、复合函数求偏导数的法则。
3、隐函数的求导法则。
4、空间曲线的切线与法平面方程。
5、空间曲面的切平面与法线方程。
6、方向导数与梯度。
基本要求:
(1)会求偏导数。
(2)掌握隐函数(一个方程,两个方程)的求导法则。
(3)会求空间曲线的切线法平面方程。空间曲面的切面与法线方程。
(4)会求方向导数和梯度。
第十五章 极值
1、极值与最值的求法。
2、条件极值的求法(拉格朗日乘子法)。
第十六章 隐函数存在定理
1、隐函数存在定理。2、函数行列式的性质。
基本要求:
(1)掌握隐函数(一个方程,多个方程)存在定理的条件与结论。
(2)熟悉函数行列式的性质。
第十七、十八章 含参变量的积分
1、含参变量的定积分。
2、含参变量的无穷限积分。
3、含参变量的无界函数的积分。
基本要求:
(1)掌握含参量定积分的分析性质。
(2)掌握含参变量广义积分的一致收敛性的概念,一致收敛性的判别法,主要是控制
收敛定理即魏尔斯特拉斯判别法。
(3)掌握一致收敛积分的分析性质,连续性、积分号下求导,积分号下积分。
第十九章 重积分,第一类曲线积分,第一类曲面积分的定义与性质
基本要求:
(1)掌握二重,三重积分,第一类曲线积分和曲面积分的定义。
(2)理解重积分的几何意义,第一类曲线积分和曲面积分的物理意义。
(3)掌握以上三种积分的性质。
第二十章 重积分的计算及应用
1、二重、三重积分化为累次积分法。
5
2、二重积分、三重积分的换元积分法。
基本要求:
(1)掌握二重积分转化为累次积分的方法。
(2)掌握二重积分的极坐标变换,三重积分球面坐标变换的积分法。
(3)了解二重积分、三重积分的一般变换的积分方法。
第二十一章 曲线积分与曲面积分的计算
1、第一类曲线积分,曲面积分的计算。
2、第二类曲线积分的定义与计算。
3、第二类曲面积分的定义与计算。
4、两类曲线积分,两类曲面积分之间的关系。
第二十二章 各种积分之间的关系
1、格林公式。2、奥高公式。3、曲线积分与路径的关系。
基本要示:
(1)掌握以上主要公式的应用。
(2)掌握曲线积分与路径的关系的条件。
考试内容基本要求:
1、 计算方面
(1)会求极限(2)会求导数,含偏导和高阶导数,方向导数,梯度。(3)会求积分(含
不定积分,定积分、广义积分、重积分、曲线积分、曲面积分)(4)会求无穷级数的和与收
敛区间,会将函数展成幂级数或 Fourier 级数。
2、证明方面
(1)用ε ——N,ε —δ 语言证明极限或函数的连续性。
(2)会运用连续函数性质(含闭区间上连续函数和极限性质如局部有界性,保号性或保
序性等)以及函数极限与数列极限的关系,证明有关命题。
(3)会用微分中值定理和定积分性质证明有关命题。
(4)函数项级数,含参变量积分(广义)的一致收敛性的证明,以及运用函数项级数,
含参变量积分一致收敛的分析性质证明有关命题,熟练掌握幂级数“内闭一致收敛”性质。
(6)熟练掌握一致连续函数的应用。
(7)会应用极限存在的法则(单调有界原理,Cauchy 收敛准则,夹逼法则,致密性定
理等)
3、判断方面
(1)会判断数值级数和幂级数的收敛性。
(2)会判断广义积分的收敛性。
4、应用方面
(1)导数应用:函数的单调性,凸性、极值、不等式。
(2)积分(含重积分)的应用:面积,体积、弧长、曲面面积。

免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨询QQ 3455265070 点击这里给我发消息 考研咨询 QQ 3455265070 点击这里给我发消息 邮箱: 3455265070@qq.com
    公司名称:昆山创酷信息科技有限公司 版权所有
    考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!