欢迎访问考研秘籍考研网!    研究生招生信息网    考博真题下载    考研真题下载    全站文章索引
文章搜索   高级搜索   

 您现在的位置: 考研秘籍考研网 >> 文章中心 >> 专业课 >> 正文  昆明理工大学2020年硕士研究生入学考试《数学分析》考试大纲

新闻资讯
普通文章 上海市50家单位网上接受咨询和报名
普通文章 北京大学生“就业之家”研究生专场招聘场面火爆
普通文章 厦大女研究生被杀案终审判决 凶手被判死刑
普通文章 广东八校网上试点考研报名将开始
普通文章 2004年硕士北京招生单位报名点一览
普通文章 洛阳高新区21名硕士研究生被聘为中层领导
普通文章 浙江省硕士研究生报名从下周一开始
普通文章 2004年上海考区网上报名时间安排表
普通文章 广东:研究生入学考试2003年起重大调整
普通文章 2004年全国研招上海考区报名点一览表
调剂信息
普通文章 宁夏大学04年硕士研究生调剂信息
普通文章 大连铁道学院04年硕士接收调剂生源基本原则
普通文章 吉林大学建设工程学院04年研究生调剂信息
普通文章 温州师范学院(温州大学筹)05研究生调剂信息
普通文章 佳木斯大学04年考研调剂信息
普通文章 沈阳建筑工程学院04年研究生调剂信息
普通文章 天津师范大学政治与行政学院05年硕士调剂需求
普通文章 第二志愿考研调剂程序答疑
普通文章 上海大学04年研究生招收统考生调剂信息
普通文章 广西大学04年硕士研究生调剂信息

友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载 

昆明理工大学2020年硕士研究生入学考试

《数学分析》考试大纲

 

第一部分  考试形式和试卷结构

一、试卷满分及考试时间

试卷满分为150 分,考试时间为180 分钟.

二、答题方式

答题方式为闭卷、笔试.

三、试卷的内容结构

极限论                       约占20

单变量微积分学               约占30

多变量微积分学               约占30

级数论                       约占20

四、试卷的题型结构

计算题                       75

证明题                       60

综合题                       15

合计 150

 

 

 

第二部分  考察的知识及范围

一、极限论

1)掌握数列极限,函数极限定义,会用数列极限、函数极限的定义证明有关极限问题;掌握函数有界、无界的定义,并会用其证明给定函数在给定区间上的有界性、无界性;掌握实数集上、下确界的定义。

2)掌握收敛数列的性质及运算,掌握单调有界数列收敛定理、迫敛性法则、柯西收敛原理、归结原则及应用;掌握函数极限的性质及运算,会用两个重要极限来处理极限问题。

3)掌握无穷小量和无穷大量的定义、性质和关系;掌握无穷小量阶的比较。

4)理解和掌握连续函数的定义和运算,解决有关函数连续性问题;掌握不连续点的类型;掌握单侧极限的概念。

5)掌握和应用闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性);掌握初等函数的连续性,理解复合函数的连续性,反函数的连续性。

6)掌握实数连续性定理:闭区间套定理、单调有界定理、柯西收敛准则、确界存在定理、聚点定理、有限覆盖定理。

7)理解平面点集的基本概念,了解矩形套定理,致密性定理、有限覆盖定理;掌握二元函数的极限,二次极限,连续性概念及计算;掌握有界闭区域上多元连续函数的性质。

 

二、单变量微积分学

1理解和掌握导数与微分概念和几何意义;能熟练地运用导数的运算性质和求导法则求函数的导数(特别是复合函数)

2)理解可导性、连续性与可微性的关系;掌握导数的几何应用,微分在近似计算中的应用;掌握高阶导数的求法。

3掌握中值定理的内容、证明及其应用;能熟练地运用罗必达法则求不定式的极限;掌握泰勒公式并能应用其解决近似计算、求极限等相关问题。

4掌握函数图形特征(单调性、极值与最值、凹凸性、拐点及渐近线)的判定及描绘函数图形。

5掌握原函数和不定积分概念;熟练掌握换元积分法、分部积分法、有理式积分法和三角有理式积分法,并能利用它们来求函数的积分;会计算简单的无理函数的积分。

6)理解定积分概念,掌握函数可积的条件;熟悉一些可积分函数类; 掌握定积分与可变上限积分的性质;能较好地运用牛顿-莱布尼兹公式,换元积分法,分部积分法计算定积分。

7)掌握定积分的几何应用;掌握定积分在物理上的应用;掌握"微元法"

8)掌握广义积分的收敛、发散、绝对收敛与条件收敛等概念;.能用收敛性判别法判断某些反常积分的收敛性。

9)掌握含参变量定积分的性质及计算。

 

三、 多变量微积分学

1)掌握偏导数、全微分、方向导数、高阶偏导数、高阶全微分等概念;了解多元函数可微、可导及连续的关系;掌握复合函数、隐函数的求导法则、由方程(组)所确定的函数的求导法则。

2)掌握隐函数的存在性定理;会求曲线的切线方程和法平面方程,曲面的切平面方程和法线方程;会求多元函数的极值(条件极值和无条件极值)。

3)掌握二重、三重积分的概念和性质;会计算重积分;会求图形的面积,体积。

4)掌握两类曲线积分的概念及计算;掌握两类曲线积分的性质;掌握两类曲线积分的关系;掌握Green公式并会用其计算有关积分

5)掌握两类曲面积分的概念及计算;掌握两类曲面积分的性质; 掌握两类曲面积分之间的关系;掌握Gauss公式、Stokes公式并会用其计算有关积分

 

四、级数论

1理解数项级数的收敛,发散,绝对收敛与条件收敛等概念;掌握数项级数的基本性质;熟练应用正项级数敛散性判别法(比较判别法、比式判别法、根式判别法和积分判别法)与任意项级数的敛散性判别法判断级数的敛散性;能熟练应用几何级数、调和级数与p级数的敛散性。

2)掌握函数项级数(函数序列)收敛及一致收敛性概念;掌握一致收敛级数的性质,能够比较熟练地运用判断一致收敛性的判别法(Cauchy收敛准则, Weierstrass判别法,Abel判别法和Dirichlet判别法)判断函数项级数(函数序列)的一致收敛性。

3)掌握幂级数,收敛半径、收敛域、和函数等概念;会求幂级数的收敛半径和收敛域;掌握幂级数的性质并能求和函数;会把函数展开成幂级数。

  4)掌握三角函数系的正交性与周期函数的Fourier级数的概念和性质;掌握Fourier级数收敛性判别法;能将函数展开成Fourier级数。

 

免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨询QQ 3455265070 点击这里给我发消息 考研咨询 QQ 3455265070 点击这里给我发消息 邮箱: 3455265070@qq.com
    公司名称:昆山创酷信息科技有限公司 版权所有
    考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!