友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载
2021年重庆交通大学硕士研究生入学初试
《线性代数与概率统计》考试大纲
一、 考试总体要求:
第一部分线性代数知识点:
1.行列式
(1) 理解行列式的定义。
(2) 了解行列式的性质。
(3) 掌握行列式的计算方法。
2.矩阵及其运算
(1) 理解矩阵的概念、理解并掌握特殊结构的矩阵,如:单位矩阵,对角矩阵,对称矩阵等。
(2)掌握同型矩阵与方阵的概念。
(3)掌握矩阵的加,减,数乘,乘,转置,共轭运算和性质。
(4)掌握方阵的幂的概念,掌握逆矩阵定义、性质及其运算。
(5)了解线性方程组求解的克拉默法则和逆矩阵方法。
(6)了解分块矩阵及其运算。
3.矩阵的初等变换与线性方程组
(1) 掌握矩阵的初等变换及性质,掌握利用矩阵的初等变换计算逆矩阵的方法,理解利用矩阵初等变换求解线性方程组。
(2) 理解矩阵秩的概念,了解矩阵秩的性质,掌握用矩阵初等变换计算矩阵秩的方法。
(3) 掌握齐次线性方程组有非零解的充要条件、非齐次线性方程组有解的充要条件和非齐次线性方程组有唯一解的充要条件。
4.向量组线性相关性
(1)掌握向量组线性相关性的概念及用矩阵初等变换判断向量组的相关性。
(2)理解向量组的极大无关组定义和向量组秩的定义,掌握向量组的极大无关组和秩的计算方法。
(3)理解线性方程组的基础解系、通解等概念和解的结构。
(4)了解n维向量的概念,并掌握其线性运算的方法。
(5)了解与相关性有关的结论。
(6)了解n维向量空间、子空间、基、维数的概念。
5.相似矩阵及二次型
(1)理解向量的内积、长度、正交性的定义概念和性质。
(2)掌握无关向量组标准正交化的方法。
(3)掌握正交矩阵的概念及性质。
(4)理解方阵的特征值与特征向量的概念及性质,掌握特征值与特征向量的计算方法。
(5)掌握二次型及矩阵表示;掌握用正交变换化二次型为标准型的方法。
(6)了解相似矩阵的概念、性质和方阵可对角化的充要条件。
(7)了解实对称矩阵的对角化的办法、了解正交变换的概念。
(8)了解配方法和初等变换法、二次型的秩、惯性定理、正定型二次型及其判别法。
第二部分概率统计知识点:
1.随机事件及其概率
(1)理解随机事件及样本空间的概念,掌握随机事件间的关系及运算。
(2)了解概率的统计定义及公理化定义,理解古典概率和几何概率的定义,掌握古典概率和几何概率的计算。
(3)掌握概率的基本性质,掌握与这些性质有关的概率计算。
(4)理解条件概率的概念,掌握乘法公式、全概率公式和贝叶斯公式,掌握与这些公式有关的概率计算。
(5)理解事件的独立性概念,掌握与事件独立性有关的概率计算,理解独立重复试验的概念,掌握有关事件概率的计算方法。
2.随机变量及其分布
(1)理解随机变量及其概率分布的概念,理解分布函数的概念及性质,掌握与随机变量有关的概率计算。
(2)理解离散型随机变量及其概率分布的概念,0-1分布、二项分布、泊松(Poisson)分布及其应用。
(3)理解连续型随机变量及其概率密度概念,掌握概率密度与分布函数之间的关系,掌握均匀分布、正态分布、指数分布及其应用。
(4)掌握离散型随机变量函数的概率分布计算,连续型随机变量的函数的概率密度和分布函数计算。
3.多维随机变量及其分布
(1)理解二维随机变量的概念,掌握离散型二维随机变量的联合概率分布、边缘分布的定义及计算,掌握连续型二维随机变量的联合概率密度、边缘密度的定义及计算,掌握与二维随机变量的概率分布有关的概率计算。
(2)理解随机变量独立性概念,掌握离散型及连续型随机变量独立的判断条件。
(3)了解二维均匀分布和二维正态分布,掌握二维随机变量函数的概率分布计算,掌握两个随机变量之和的概率分布计算。
4.随机变量的数字特征
(1) 理解数学期望和方差的概念、性质。
(2) 掌握0-1分布、二项分布、泊松分布、均匀分布、正态分布、指数分布的数学期望和方差的计算。
(3)掌握根据随机变量X的概率分布计算其函数g(X)的数学期望,掌握根据随机变量(X,Y)的联合概率分布计算函数g(X,Y)的数学期望。
(4)了解相关系数和协方差的概念、性质与计算,了解独立性和不相关之间的关系。
5.大数定律及中心极限定理
(1)了解切比雪夫大数定律、伯努利大数定律及辛钦大数定律的条件及结论。
(2)了解棣莫弗-拉普拉斯中心极限定理、列维-林德贝格中心极限定理的结论和应用条件。
6.样本及抽样分布
(1)了解总体、简单随机样本、统计量、样本均值与样本矩及样本方差的概念。
(2)掌握正态总体的抽样分布,理解标准正态分布、χ2分布、t-分布、F-分布的分位数。
7.参数估计
(1)理解参数的点估计、估计量与估计值的概念。
(2)掌握矩估计法和最大似然估计法。
(3)掌握估计量的无偏性,了解估计量的有效性和一致性概念。
(4)了解区间估计的概念,单个正态总体均值的置信区间计算。
8.假设检验
(1)理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
(2)掌握单个正态总体的均值和方差的假设检验。
二、考试形式与试卷结构
(一)考试形式
考试形式为笔试,考试时间为3小时,满分为150分。
(二)试卷结构
1. 填空题(30分)
2. 判断题(20分)
3. 计算题(80分)
4. 证明题(20分)
三、主要参考书目
1.《(工程数学)线性代数》(第六版),同济大学数学系,高等教育出版社,2013年。
2.《概率论与数理统计》(第四版),盛骤、谢式千、潘承毅,高等教育出版社,2008年。
免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。