友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载
2021年全国硕士研究生入学考试
湖北师范大学自命题考试科目考试大纲
(科目名称:数学分析 科目代码:601)
一、考查目标
数学分析科目考试内容包括极限与连续、微分学、积分学和级数要求考生系统掌握相关内容的基本知识、基础理论、基本方法、基本计算,并能运用相关理论和方法分析、解决实际问题。
二、考试形式与试卷结构
(一)试卷成绩及考试时间
本试卷满分为150分,考试时间为180分钟。
(二)答题方式
答题方式为闭卷、笔试。
(三)试卷内容结构
各部分内容所占分值为:
极限与连续 约40分
一元微积分 约40分
多元微积分 约40分
无穷级数 约30分
(四)试卷题型结构
计算题:4小题,每小题15分,共60分
证明题:6小题,每小题15分,共90分
(五)主要参考书目
华东师范大学数学系主编:《数学分析》(上、下册),高等教育出版社2010年。
三、考查范围
(一)考查目标
1、系统掌握数学分析原理的基本概念、基础知识、基本理论和基本计算。
2、掌握和理解极限理论和方法,由此而产生的连续性、微分学、积分学和无穷级数。
3、能灵活运用基本定理和基本方法证明问题,能灵活运用基本公式计算问题,以及综合运用。
(二)考试内容
一)集合与函数
1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理。
2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在 上的推广。
3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质。
二)极限与连续
1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质)。
2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限 及其应用。
3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限 及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系。
4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性)。
三)一元函数微分学
1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性。
2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor公式(Peano余项与Lagrange余项)。
3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算。
四)多元函数微分学
1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式。
2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换。
3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线)。
4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法。
五)一元函数积分学
1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分: 型, 型。
2. 定积分及其几何意义、可积条件(必要条件、充要条件: )、可积函数类。
3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理。
4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、 非负时 的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet判别法、无界函数广义积分概念及其收敛性判别法。
5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),及其它应用。
六)多元函数积分学
1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换)。
2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换)。
3.重积分的应用(体积、曲面面积、重心、转动惯量等)。
4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性。
5.第一型曲线积分、曲面积分的概念、基本性质、计算。
6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件。
7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke公式,两类线积分、两类面积分之间的关系。
七)无穷级数
1. 数项级数
级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法。
2. 函数项级数
函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用。
3.幂级数
幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数。
4.Fourier级数
三角级数、三角函数系的正交性、2 及2 周期函数的Fourier级数展开、 Beseel不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理。
免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。