欢迎访问考研秘籍考研网!    研究生招生信息网    考博真题下载    考研真题下载    全站文章索引
文章搜索   高级搜索   

 您现在的位置: 考研秘籍考研网 >> 文章中心 >> 专业课 >> 正文  2017年西安电子科技大学871高等代数考研大纲

新闻资讯
普通文章 上海市50家单位网上接受咨询和报名
普通文章 北京大学生“就业之家”研究生专场招聘场面火爆
普通文章 厦大女研究生被杀案终审判决 凶手被判死刑
普通文章 广东八校网上试点考研报名将开始
普通文章 2004年硕士北京招生单位报名点一览
普通文章 洛阳高新区21名硕士研究生被聘为中层领导
普通文章 浙江省硕士研究生报名从下周一开始
普通文章 2004年上海考区网上报名时间安排表
普通文章 广东:研究生入学考试2003年起重大调整
普通文章 2004年全国研招上海考区报名点一览表
调剂信息
普通文章 宁夏大学04年硕士研究生调剂信息
普通文章 大连铁道学院04年硕士接收调剂生源基本原则
普通文章 吉林大学建设工程学院04年研究生调剂信息
普通文章 温州师范学院(温州大学筹)05研究生调剂信息
普通文章 佳木斯大学04年考研调剂信息
普通文章 沈阳建筑工程学院04年研究生调剂信息
普通文章 天津师范大学政治与行政学院05年硕士调剂需求
普通文章 第二志愿考研调剂程序答疑
普通文章 上海大学04年研究生招收统考生调剂信息
普通文章 广西大学04年硕士研究生调剂信息

友情提示:本站提供全国400多所高等院校招收硕士、博士研究生入学考试历年考研真题、考博真题、答案,部分学校更新至2012年,2013年;均提供收费下载。 下载流程: 考研真题 点击“考研试卷””下载; 考博真题 点击“考博试卷库” 下载 

《高等代数》复习参考提纲
一、总体要求
高等代数是数学各专业的一门重要基础理论课。要求学生掌握高等代数的基本概念,基
本理论,基本方法和基本技巧;熟练掌握矩阵和线性变换的关系,学会线性方程组,矩阵,
线性变换问题的相互转化;理解具体与抽象、特殊与一般、有限与无限等辨证关系。并善于
应用这些理论和方法,具有较强的分析问题与解决问题的能力。
二、课程考试内容
(一)多项式
数域,整除的概念与性质,最大公因式,因式分解,重因式,多项式函数,有理系数多
项式,多元多项式,对称多项式。
(二)行列式
排列,n 阶行列式的概念,n 阶行列式的性质,行列式的计算,行列式按一行(列)展
开,拉普拉斯(Lap lace)定理,克兰姆法则。
(三) 线性方程组
消元法,矩阵,矩阵的秩,线性方程组的初等变换等概念及性质,线性方程组有解判
别定理。n 维向量的概念及运算;向量组的线性组合、线性表示、线性相关、线性无关等概
念;向量组的线性相关性的判定;两个向量组的等价;向量组的极大无关组、秩的概念及性
质;向量组的秩与矩阵的秩的关系。线性方程组解的结构。
(四) 矩阵
矩阵的概念, 矩阵的运算, 矩阵乘积的行列式与秩, 矩阵的逆, 矩阵的分块, 初
等矩阵,分块矩阵的初等变换及应用。
(五)二次型
二次型的矩阵表示,标准形,唯一性,惯性定律,正定二次型。
(六)线性空间
线性空间的概念与性质,维数,基,坐标,基变换,坐标变换,子空间,子空间的和与
交,子空间的直和,线性空间的同构。
(七)线性变换
线性变换的概念与性质,线性变换的运算,线性变换的矩阵,特征值与特征向量,矩阵
相似对角矩阵的各种条件,线性变换的值域和核,不变子空间,Jordan 标准形,最小多项
式。
(八)  -矩阵
 -矩阵的标准形,行列式因子,不变因子,初等因子,矩阵相似的条件,矩阵的有理
标准形。
(九)欧几里得空间
欧几里得空间的概念与性质,标准正交基,欧几里得空间的子空间与同构,正交变换与
对称变换,Schimidt 正交化方法,实对称矩阵的标准形,最小二乘法,酉空间。
(十)双线性函数
线性函数,对偶空间,双线性函数。
三、考试形式与试题结构
1、试卷分值:150 分
2、考试时间:180 分钟
3、考试形式:闭卷
4、题型结构:选择与填空题,计算题,证明题。
四、推荐参考书目
1、北京大学数学系几何与代数教研室代数小组编,《高等代数》(第三版),北京,高
等教育出版社。
2、张禾瑞,郝鈵新,《高等代数》(第四版),北京,高等教育出版社。
3、马建荣,刘三阳,《线性代数选讲》,北京,电子工业出版社。
4、李师正等,《高等代数解题方法与技巧》,北京,高等教育出版社。

免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除,另:本文仅代表作者个人观点,与本网站无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

  • 上一篇文章:

  • 下一篇文章:
  • 考博咨询QQ 3455265070 点击这里给我发消息 考研咨询 QQ 3455265070 点击这里给我发消息 邮箱: 3455265070@qq.com
    公司名称:昆山创酷信息科技有限公司 版权所有
    考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!