作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。既然教案这么重要,那到底该怎么写一篇优质的教案呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
循环小数教案板书设计篇一
1、使学生进一步理解并循环小数、有限小数、无限小数的概念,掌握它们之间的联系和区别,并能正确区分。
2、培养学生总结规律的能力,使学生既长知识,又长智慧。
3、培养学生学习数学的积极情感。
进一步掌握相关概念并建立联系。
一、主动回顾,知识再现:上节课我们学习了什么知识?
二、单项训练,夯实基础:
1、进一步理解循环小数的概念。
下面哪些数是循环小数,如何判断的?
0.06262…3.203203…0.2142857142857…70.2641。
2、上面这些小数可以分为几类?哪几类?这几类小数有怎样的关系?
有限小数。
无限小数。
三、综合练习,运用提高:
先请学生说说取近似值的方法,再让学生独立完成。
2、p30第6题。
先观察这些小数的特点,再试一试。
请学生说出判断大小的过程,教师适时评价。
方法:把这些简便记法的循环小数还原。
师小结:先观察需要还原的小数位数,再比较,比较方法与以前比较小数的大小方法相同。
四、独立练习:p30第4、5题。
在今天的课上,我向学生说明了为什么所有除法算式的商不可能为无限不循环小数。因为余数必须要比除数小,所以任何除法算式余数的可能性是有限的。当除的次数比余数可能性的个数多时,必定出现与前面余数相同的现象。我用1除以7来举例说明,学生领悟得很快,绝大多数学生明白了其中的奥妙。
其次,我还向学生介绍了无限不循环小数即是初中所要学到的“无理数”。有学生(张子钊)问“我们学不学无理数呢?”,我简单介绍了六年级即将认识的小学阶段唯一一个无理数派。孩子们对无理数十分感兴趣,我又利用课余时间为他们补充介绍了无理数产生的数学史。
循环小数教案板书设计篇二
教学要求:认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。
教学过程:
认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。
1、认真看课本27页,观察400÷75的竖式计算,说说你的发现。
2、思考:这个竖式如果继续除下去,会是怎样的情况。你怎样表示出它们的商?
五分钟后,比一比看谁能做出类似的题目,并能说出自己的发现。
1、学生看书,教师巡视,注意帮助学困生。
2、统计了解学生自学情况。
3、学情检测。
(1)出示检测题:
计算后观察商的特点:
28÷18=78.6÷11=。
5.7÷9=20÷3.7=。
(2)请四名同学板演,其他同学自己做,做好后与板演的同学对比,找出不同。
1、更正板演题。
评思路、评方法、评步骤、评结果、评规范。
2、讨论。
3、训练:指出下列哪些是循环小数?
1.55…5.314162…。
1.53533530.19292…。
0.547754…16666。
1.5353…0.6333…。
5.405405…1.2108108…。
认真看课本28页的“你知道吗?”
思考:
1、循环小数中,依次不断重复出现的数字叫什么?
2、数字上面的小圆点叫什么?
3、像5.3…可以简写成多少?
4、7.14545…也可以简写成多少?
五分钟后,看谁说得准确,写得漂亮。
1、学生看书,教师督促学生专心看书。
2、了解学习情况。
3、出示检测题:
用循环节表示出下列循环小数:
1.55…=0.19292…=。
1.5353…=0.6333…=。
5.405405…=1.2108108…=。
指名板演,其他同学仔细观察,为评价作好准备。
看写得是否准确规范,学生评,师生评。
1、必做题:
计算下面各题,除不尽的用循环小数的简写表示商,再保留两位小数写出它们的近似值。
(1)6.64÷3.3(2)2.29÷1.1。
(3)4÷37(4)38.2÷2.7。
2、选做题:
循环小数教案板书设计篇三
1、在自主计算、借助计算器计算的活动中,经历初步认识循环小数的过程。
2、知道什么是循环小数,能指出哪些商是循环小数。
3、体会计算器的工具性,在借助计算器进行数学探索的活动中获得成功的体验。
教学环节师生活动设计意图。
一、创设情境。
师生谈话,由树上结果实的话题,引出教材中的问题。教师口述大枣、核桃的价钱信息,并板书出来。
(设计意图:由现实生活中秋季结果的谈话开始,创造愉快和谐的课堂氛围,自然引出要解决的问题情境。)。
二、解决问题。
1、提出“估算一下大枣和核桃的单价哪个便宜一些”的问题,要求说一说是怎样估算的,给学生充分表达不同想法的机会。
(设计意图:充分利用课程资源,为学生提供估算的机会,培养学生估算意识和能力,发展数感。)。
2、平均每千克大枣多少元。
提出问题,让学生列式并尝试用竖式计算。当板演的学生除到三位小数时,停止计算。
(设计意图:经历自主计算,初步感受商的特点的过程,为认识循环小数提供感性材料。)。
汇报计算的情况,说一说发现了什么问题。给学生充分交流不同结果的机会。
(设计意图:在交流讨论的过程中,了解商中数的字3重复出现的事实,初步感受循环现象,增强学生进一步学习的好奇心。)。
鼓励学生用自己的话解释商重复出现的原因。
(设计意图:以已有经验的基础上,带着问题经历自主计算,发现商的特点的过程,为认识循环小数提供感性材料。)。
3、平均每千克核桃多少元。
提出问题,让学生列式并尝试用竖式计算。提示:边计算边观察商有什么特点。
(设计意图:在展示交流的过程中,使学生感受循环小数的特点。)。
交流计算情况,讨论除得的商有什么特点,要给学生充分展示不同结果和想法的机会。
(设计意图:在自主尝试计算、交流的基础上,引导学生进行合理推测,培养学生归纳、推理能力,发展数学思维。)。
让学生观察竖式,并提出“想一想”的问题。
用计算器验算。
1、写出58.6÷11,学生用计算器计算后交流计算结果。
(设计意图:借助计算器,可使学生摆脱烦琐的计算,把更多的时间用于循环小数的研究和学习上。)。
2、让学生观察58.6÷11的商,讨论商有什么特点。使学生了解从商的小数部分,第二位开始,重复出现2和7两个数字。
(设计意图:在观察讨论中使学生体会到商中数字循环的不同特点。)。
3、介绍58.6÷11商的书写方法和表述方式。让学生写出10÷3、83÷11的商并交流。
(设计意图:了解循环小数的书写方式是数学学习的需要,写其他两个算式的商,既是书写练习,也为下面的讨论作准备。)。
4、让学生观察三个算式的商,说一说它们有什么共同点和不同点。给学生充分发表自己意见的空间。
(设计意图:观察、讨论三个商的特点,为概括循环小数的概念作准备。)。
四、课堂练习。
学生独立完成练习。
循环小数教案板书设计篇四
循环小数是小学数学第九册上期教学内容,是一个新知识,这部分内容概念较多,又比较抽象,是教学的一个难点,循环小数是在学生学习了小数除法的意义、小数除法的计算及商的近似值的基础上进行教学的。这部分内容概念较多,又比较抽象,是教学的一个难点。
课本的例8,是教学从某一位起,一个数字重复出现的情况,为认识循环小数提供感性材料。例9,通过计算两道除法式题,呈现了除不尽时商的两种情况:一种是从某位起重复某个数字;另一种是从某位起几个数字依次不断重复出现。由此引出循环小数的概念并介绍循环小数的简便记法。接着教材用想一想的方式组织学生讨论“两个数相除,如果不能得到整数商,所得到的商会有哪些情况”。由此介绍有限小数和无限小数的概念。以前学生对小数概念的认识仅限于有限小数,到学习了循环小数以后,小数概念的内涵进一步扩展了,学生认识到除了有限小数以外,还有无限小数,循环小数就是一种无限小数。本节课通过四个环节进行教学。
一、创设问题情境,让学生成为发现者。
《数学课程标准》强调:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”建构主义教学论指出,复杂的学习领域应针对学生先前的经验和学习兴趣。新课开始,我以学生身边的循环现象为导入点,通过计算求商,让学生在不公平的“除尽”与“除不尽”的比赛中发现问题,初步感知有限小数,无限小数,让学生体验“循环”的含义,从而说出生活中的“循环现象”,将生活与数学融合在一起,使学生真正理解了“循环”含义,从而为进一步探究“循环小数”的意义架起桥梁。
循环小数这种数学现象,激发起学生探究新知的兴趣。
二、引导学生自主探索,参与知识形成的全过程。
数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识,本节课通过让学生算一算、想一想、观察、比较、讨论中获得循环小数的概念。在学习过程中,教师为学生提供了一个思考与合作交流,创新的空间,充分调动学生的学习积极性,成为学习的主人,让他们动脑、动眼、动口研究问题,获取新知。再通过让学生自学课本,了解循环节和循环小数的简便写法以及有限小数、无限小数的概念,让学生自己发现新知,培养学生的阅读数学书的习惯和自学的能力。
三、运用新知,解决问题。
设计不同层次的练习题,巩固所学知识,再通过讨论、师解、生自评,让不同的学生在数学学习中得到不同的.发展,享受了不同的成功。
从认识的过程来说,形成概念是从感性认识上升到理性认识的过程,即从个别的事例总结出一般性的规律;巩固概念则是识记概念和保持概念的过程,是加深理解和灵活运用概念的过程,即从一般到个别的过程。好的练习设计能够巩固学生的知识,进而延伸知识,培养学生的创新意识。教学完新知后,我由浅入深设计了三个不同层次的练习,使不同层面的学生都学有所获。
四、通过回顾,思考,弄清本节课所获得的新知识,在大脑里留下深刻的印象,进一步明确学习重点,掌握知识要点对所学知识得到了及时的巩固、提高、升华。
本节课依据新的《课程标准》及新的教学理念。注重了创设问题情境,激发学生学习兴趣。引导学生自主探索,合作学习,参与知识形成的全过程,充分体现了教师主导,学生主体的学习氛围,使全体学生在数学学习中都得到了不同的发展,教学效果好。
循环小数教案板书设计篇五
教学目标:1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。
2、理解有限小数,无限小数的意义,扩展数的范围。
3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。
教学过程:
一、自主探索,获取新知。
1、师谈活引入新课:
我班男生400米谁跑得最快?成绩如何?和王鹏比比,(出示例题)。全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。
观察竖式,你发现了什么?(组织学生小组内交流)。
可能发现:1、余数总是25。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现3。
师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现3?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。
师:那么商如何表示呢?你为什么使用省略号?(师板书)。
出示:281878.611。
先计算,再说一说这些商的特点。(请生板演计算结果)。
学生讨论后,指名汇报,教师抓住学生回答:如1、小数部分,位数无限(或者除不尽)。2、有的是一个数字不断重复出现,有的是两个。教师小结循环数的意义,(板书课题)。
4、巩固练习:下列哪些是循环小数?
0.99952.525254.16773.2121213.1415926。
学生评议。
5、介绍简便记法。
如5.333还可以写作5.3、7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。
(52.52525可能出现问题52.5252.52552.52,师生共同辨析)。
7、理解有限小数和无限小数的意义。
师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?
学生小组讨论,汇报。
师适时抛出有限小数,无限小数的概念,并板书,判断前面练习题中的小数哪些是有限小数?哪些是无限小数,使学生明确循环小数属于无限小数。
学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。
二、学生小结。
三、巩固练习。
循环小数教案板书设计篇六
首先出个问题,假设给你一个小数(无限循环小数),你能说出小数点后第10000位的数字是几吗?10000位?是在开玩笑吗?数都要数好久。其实用心点的同学们就已经知道了,这个数字肯定是有一定的规律可寻的,不然,真的就是死记硬背的数学了。
每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才。
阿尔法趣味数学课程教案是通过对小学数学课本上的知识点分析和趣味故事相结合,让同学们感知到数学其实还挺有趣的。培养孩子学习数学的兴趣、逻辑思维能力和独立解决问题的能力。
老师通过趣味小故事的形式引导同学们在游戏中学习。
了解和认识无限循环小数的意思及其特点,规律,学会在什么场景下使用循环小数;
了解除法中商的小数部分的特点。
适合年级:小学五年级。
教学重点:认识循环小数。教学难点:循环小数的循环节和循环点。循环小数的意思:
一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。像:5.333…和7.14545…都是循环小数。一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节、例如:
5.333…的循环节是3。
7.14545…的循环节是45。
6.9258258…的循环节是258。
写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。例如:
老师:同学们,最近你的数学学习进步很大呀,我来考你们一道题吧。5÷7等于多少?
学生:这么简单呀,约等于0.71。
老师:说准确点!小数点后第1000位的数字是几?
学生:啊!这个可难住我们了,到底是多少呀,老师给我们讲讲吧。
老师:这道题的得数是个无限循环小数:5÷7=0.714285714285.。.。.。
循环小数是有循环节的,循环节首尾相接循环出现。仔细看"714285"这6个数字在不断循环。那循环节就是它们6个了!这样就好算第1000位是多少了。1000÷6=166……4,循环节在到第1000位的时候循环了166次,并余下4个数字,那么从循环节开始往后数第4位就是2。
学生:哦,也就是小数点后第1000位的数字应该是2.
老师:那我再问你们,前1000个数字的和是多少?
学生:是4496,哈哈,你考不倒我。这个得数是经过166次循环再加上余下的4位数字得到的。那么这个小数的循环节的和是7+144+2+8+5-27,那么166×27=4482;剩下的4个数字之和是7+1+4+2=14,所以前1000个数字之和就是4482+14=4496。
提示:解答这道题要注意:一是5÷13的商要算准确,否则就无法求出第1000位的数字;二是要找准商的循环节,看清循环节有几个数。
无限循环小数是由小数除法的商产生的,学习无限循环小数的前提是要掌握好除法,商和余数。
计算5÷13的商的小数点后面第10000位的数字是多少?
无限小数一定比有限小数大。
一个小数不是有限小数,就是无限小数。
循环小数教案板书设计篇七
循环小数是在学生学习了小数除法的意义、小数除法的计算及商的近似值的基础上进行教学的。这部分内容概念较多,又比较抽象,是教学的一个难点。
《数学课程标准》指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”建构主义教学论指出,复杂的学习领域应针对学生先前的经验和学习兴趣。新课开始,通过讲故事的方式,引起学生的兴趣,让他们体会生活中不断重复出现和无限的表象,我以学生身边的循环现象为导入点,让学生体验“循环”的含义,从而说出生活中的“循环现象”,将生活与数学融合在一起,使学生真正理解了“循环”含义,从而为进一步探究“循环小数”的意义架起桥梁。
接着通过计算小乌龟和小蜗牛的爬行速度两道除法式题,呈现了除不尽时商的两种情况:一种是从某位起重复某个数字;另一种是从某位起几个数字依次不断重复出现,让学生观察辨别,由此引出循环小数的概念并介绍循环小数的简便记法。接着用想一想的方式组织学生讨论“两个数相除,如果不能得到整数商,所得到的商会有哪些情况”。
以前学生对小数概念的认识仅限于有限小数,到学习了循环小数以后,小数概念的内涵进一步扩展了,学生认识到除了有限小数以外,还有无限小数,循环小数就是一种无限小数。
从认识的过程来说,形成概念是从感性认识上升到理性认识的过程,即从个别的事例总结出一般性的规律;巩固概念则是识记概念和保持概念的过程,是加深理解和灵活运用概念的过程,即从一般到个别的过程。好的练习设计能够巩固学生的知识,进而延伸知识,培养学生的创新意识。教学完新知后,我由浅入深设计了三个不同层次的练习,使不同层面的学生都学有所获。
循环小数教案板书设计篇八
2002、9、26(领导听课)。
1.通过教学使学生理解的意义,了解循环节、纯、混。
2.培养学生观察、概括的能力。
3.培养学生自学的能力。
理解的意义和怎样找循环节。
怎样从竖式中找循环节。
投影。
一、铺垫孕伏:
:观察后继续填空,并说一说你为什么这样填?
()()()()()()()()()……。
(1)(3)(5)(7)(1)(3)(5)(7)()()()()……。
:1、你们所说的规律、顺序是什么?
2、“1357”的顺序可以变化吗?(板书:“依次”)。
3、在你们的生活中有这样的事吗?(四季、星期、从前有个“山”,山里有个“庙”,庙里有个“老头”……)。
导入:在数学领域中也有这样的规律,今天我们就一起来研究。
二、探究新知:
1.:106(1.66……)7.111(0.64545……)9.830(0.3266……)。
:(1)任选两题计算,有时间可做第三题。
(2)在计算过程中,你们发现了什么?
:“依次不断”、“重复出现”、“一个数字”、“几个数字”
2.总结概括的意义。
--------相同:都是从小数的小数部分起。
重复出现的数字。
不同:有的从小数部分第一位起。
有的不是从小数部分第一位起。
(2)它们的商怎样表示?有人知道它们的名字吗?()。
(3):用概括的语言说说什么是?
--------一个小数,从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现,这个小数叫做。(投影概念)。
3.了解循环节、纯、混。
(1)提问:你们还了解的哪些知识?给大家介绍一下。
(2)教师小结:
:一个的小数部分,依次不断重复出现的数字叫做这个的循环节。例如:1.66……循环节是“6”
o.64545……循环节是“45”
:循环节从小数部分第一位开始的。
:循环节不是从小数部分第一位开始的。(例如:板书)。
:写时,为了简便,小数的循环部分只写出第一个循环节。
如果循环节只有一个数字,就在这个数字上加一个圆点,
如果循环节有一个以上的数字,就在这个循环节的首位和末位的数字上各加一个圆点。(例如:板书)。
(3):刚才,我们了解了的有关知识,下面,我们通过练习来巩固一下这些知识。
:8.9÷3.7(计算,并指出它的循环节、判断纯或混、简写)。
:从竖式中,你怎样找循环节?
4.计算中遇到,可以根据需要取它的近似值。
:1.66……(保留一位小数)。
1.66……(保留两位小数)。
0.645……(保留两位小数)。
0.645……(保留三位小数)。
5.自学:有限小数和无限小数。
思考:(1)两个数相除,如果不能得到整数商,会有几种情况出现?
(2)什么叫有限小数和无限小数?
(3)是有限小数,还是无限小数?
三。作业:
p252、3、4。
:对于今天的学习,你还有什么问题?
混
概念取近似值。