学习中的困难与挑战是我们不可避免的经历,总结能帮助我们更好地应对。阅读不同类型的文章可以帮助我们学习不同的写作风格和技巧。这里有一些有关经济发展和社会公平的案例研究,供大家参考和思考。
教育工作者对圆的面积教学的反思篇一
《圆的面积》这一节课是很重要的一节课。它不仅要向学生渗透曲线图形与直线图形的关系,运用化曲为直的数学思想导出圆的面积的计算公式,而且为以后的圆柱、圆锥等知识的学习打下了基础。本节课,我认为我有2个亮点:
在课的开始,我出示了一个教学情景:一只羊被一条5米的绳子拴在草地上的木桩上,它能吃到多少平方米的草呢?学生们经过了一番思索一致认为以5米为半径,以木桩为圆心,画一个圆,圆上的草就是羊所能吃到的草,随着学生的指引,我在黑板上板画,聪明的学生马上就意识到了“求出了圆的面积,就是羊能吃到多少平方米的草。”我指着黑板上草坪上的圆,让学生理解:“什么是圆的面积?”从而引导出:圆的面积就是它所占平面的大小。
在活动操作之前,我先领学生回顾,平行四边形公式的推导方法。然后铺垫猜想:圆可以转化成我们学过的什么图形来计算呢?接下来,学生们带着猜想,运用书中附页上提供的学具自主探究。一堂课,时间毕竟有限,要在有限的时间内完成这项活动。我事先做了充分地考虑:四人一组,细化了每个小组人员的分工:一人剪16等分的圆,另一个人整理剪好的部分;一人剪32等份的圆,另一个随后整理,全剪完,四人集智慧,分别拼,看都能拼出什么图形来。这样分工既节省时间,又能提高课堂效率,还充分地发挥了团队小组合作的力量。
学生拼完图形,由于学具纸很薄,等份的份数不够,学生在剪裁时存在着一定的误差,剪得不均匀,致使拼完的图形十分不规范,于是,我灵机一动,让学生用格尺,用笔沿着拼好的图形拓一下,这样就缓解了图形不规范所造成公式推导的障碍。学生探究后,再用教具演示公式推导的过程,让学生加深理解这一过程。就这样,我们巧妙衔接,推导了公式。顺利而高效地完成了探究活动。
教育工作者对圆的面积教学的反思篇二
圆是最常见的图形之一,它是最简单的曲线图形。学生初步感知当正多边形的边数越来越多时,这个正多边形就会越来越接近圆。通过对圆的研究,使学生初步认识到研究曲线图形的基本方法,借助直线图形研究曲线图形,渗透了曲线图形与直线图形的关系。从“以旧引新”中渗透转化的思想方法;从“动手操作”中渗透“化曲为直”的思想方法;从“探究演变过程”中,渗透极限的思想及猜想与实验验证的思想方法。
俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
在凸现圆的面积的意义以后,通过对比复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,也可以拼成三角形和梯形。学生动手剪拼好后,选择其中2~3组进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越接近图形平行四边形或长方形。这个环节的设计也是“极限”思想渗透的最好体验。三角形和梯形可以让学生自己下课后推导。
再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。
通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。
教育工作者对圆的面积教学的反思篇三
本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。
本课开始,我引导学生回忆简述了“曹冲称象”的故事,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
当学生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。
这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。
教育工作者对圆的面积教学的反思篇四
《圆的面积》中的圆是小学阶段最终认识的一个平面图形,它对学生来说是一种新的认知。是在学生掌握了面积的含义及平行四边形、长方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上来进行教学的。在教学中,我引导学生回忆了平行四边形求面积公式时的推导方法,采用小组合作探究的学习方式,让他们亲身经历了圆的面积公式的推导过程,从而有了更深刻的了解,发展了学生自主探究的本事。
课刚开始,我与学生们一齐复习了前面学习的圆的周长公式,为下头计算圆的面积公式做好了铺垫。先让学生各自述说自我对于圆的面积的一些认识,再提出一个难题:你能想办法求出圆的面积么?应对这一问题,大部分学生一筹莫展。个别同学经过预习,对本课所采用的方法有了必须的了解,表达了利用剪一剪和拼一拼的方法进行研究的想法。在这时,提出以前有没有这样剪一剪拼一拼的方法?学生回忆起以前学平行四边形面积时也是沿平行四边形的高剪下一三角形,再经过平移补到缺口的方法将平行四边形转化为长方形。从中得出了转化是一种很巧妙的方法,能够在动手操作的过程中用到。然后同学们小组合作,动手操作,孩子们经过操作后,发现将圆等份后能够将圆转化成一个近似的平行四边形。如果将圆等分的等份越多,那转化的图形就越接近的平行四边形。能够根据长方形或平行四边形的面积计算公式推导出圆的面积计算公式。根据学生的回答,利用课件的演示,直观的向他们展示了转化过程以及利用极限的方法变成。
长方形后其长、宽与圆的周长、半径之间的关系。最终在学生们大胆猜测,积极求证之下推导出了圆的面积计算公式。经过了一些例题的练习和巩固,学生们基本掌握了如何利用面积公式计算圆的面积。
为了本节课的教学,自我经过了较长时间的精心准备,所以,从整个教学设计来看还做得较为可行,重点把握的比较准确。可是在具体实施教学时还是存在着几点不足:
1、课堂语言评价存在着较大的不足。平时比较不怎样注意这方面的培养,导致课堂气氛没有很好的被调动起来。所以,期望能经过平时课堂教学的磨练逐步改善这个缺点。
2、圆的面积公式推导及实践操作花费了较多的时间,所以在讲解推导过程中讲的不够透彻,学生理解还可是深入。如果当时在引导上能及时研究到这一点,并给予更具技巧性的引导,或与能使学生理解的更加透彻,那么整个课堂讲显得更为饱满。
这学期的磨课活动虽然结束了,但它留给我的思考还是很多的,期望能在今后的教学中取长补短,积累经验,取得更大的提高。
教育工作者对圆的面积教学的反思篇五
圆的面积是学生在学习了圆的基本特征以及圆的周长的基础上进行探讨、学习的,因为学生在学习圆的周长的时候已经了解了化曲为直的数学思想,所以,在学习圆的认识的时候继续渗透这种思想,以及再引申到数学的极限思想。这有利于学生知识的迁移,也是学生在学习上的又一次突破。因此,在教学中我注重以下几个环节的教学:
一、回顾五年级多边形面积的计算公式推导方法,引导学生求圆的面积也可以把圆转化成学过的图形,从圆的周长到圆的面积体验其中不同本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、让学生猜测,激发探究,在了解圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来。
三、演示操作,加深理解,当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个之前准备好的圆,小组拼一拼,说一说能拼成什么图形?并思考它与圆有怎样的关系。这样,通过学生操作,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。
四、引导学生主动参与知识的形成过程。本课时教学的重点是圆的面积计算公式的推导。教学时,我作为引导者只是给学生指明了探究的方向,而把探究的过程留给学生。学生则以小组为单位,通过合作剪拼,把圆转化成学过的图形(平行四边形),我把各小组剪拼的图形逐一展示后,又结合课件演示,引导学生通过观察发现“分的份数越多,拼成的图形就越接近于长方形”,并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。这样的学习方式不仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。在掌握数学学习方法的同时,学生的空间观念得到进一步发展。
五、存在和改进的地方有:
2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0.3厘米,求圆的面积,有部分学生会把0.3的平方算成是0.9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!
教育工作者对圆的面积教学的反思篇六
“圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我异常注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:
在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一资料是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
接近图形平行四边形或长方形。再比较圆形和这个拼成的图形之间的关系。经过剪、拼图形和原图形的比较,将圆与拼成图形有关的部分用彩色笔标出来,构成鲜明的比较,并为后面推导面积的计算公式作了充分的铺垫。
经过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的构成。
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习情景进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用本事。在每一道练习题的设置上,都有不一样的目的性,注重每个练习的指导侧重点。
但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。
教育工作者对圆的面积教学的反思篇七
《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生运用已有的知识经验来实现“新知到已知”的转化,最后推导出圆的面积计算公式。
在教学本课时,我努力做到了以下几点:
1、重视学生活动经验的积累。先引导学生用“数方格”的计算圆面积,感受到其方法既不方便又不准确,再启发学生“能否将圆转化成我们学过的图形进行研究”。在此过程中,充分调动学生已有的知识经验,回忆平行四边形的面积计算公式的推导过程,以实现学生对“新知转化为已知”这一数学学习方法的迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经历“转化”的过程,进一步促进了学生对这一方法经验的内化。
2、重视培养学生“数学化”的口头表达能力。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的发现,让学生深刻感受到化曲为直中“无限接近”的极限思想。在发现新拼成的平行四边形的与圆的联系后,引导学生用“因为……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培养了学生思维的严密性和语言表述的准确性。
3、充分发挥多媒体课件的作用。在教学中,教师通过课件演示,直观形象地再现了拼成的平行四边形与圆各部分之间的联系(底相当于圆周长的一半,高相当于圆的半径),轻松化解了教学难点,让学生教容易地推导出了圆的计算公式。
不足之处:
1、在引导学生“把圆转化成已学过的图形”进行面积研究时,教师缺乏有效的启发——为什么要把“曲”化为“直”,缺乏必要的指导——圆如何剪、如何拼,致使小组活动中某些学生无从下手。
2、由于担心学生知识底子薄,无法按时推导任务,教师在引导学生发现“拼成的新图形和圆的联系”时,牵的多,放的少,抑制了学生思维的主动性、独立性和创造性。
教育工作者对圆的面积教学的反思篇八
圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
学生通过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。
通过学生的操作,教师再运用flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。通过计算机的声、光、色、形,综合表现能力,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的积极性、主动性、创造性。
转载自 Www.kaOYaNmIJI.COm
教育工作者对圆的面积教学的反思篇九
本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和老师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程达到最优化。
一、让学生多种感官参与学习,形成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。
如揭示圆的面积定义,。基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的形成,达到了预想的教学目的。
二、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。
习中的妙用。而且学生在抽象、概括、归纳推理过程中接受严密的逻辑思维训练,形成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和能力。从而顺利的想到圆的面积计算公式也可以这样推导。
教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,通过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生通过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。
但是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应该改进的地方和努力的方向。
《圆的面积》中的圆是小学阶段最后认识的一个平面图形,它对学生来说是一种新的认知。是在学生掌握了面积的含义及平行四边形、长方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上来进行教学的。在教学中,我引导学生回忆了平行四边形求面积公式时的`推导方法,采用小组合作探究的学习方式,让他们亲身经历了圆的面积公式的推导过程,从而有了更深刻的了解,发展了学生自主探究的能力。
1
长方形后其长、宽与圆的周长、半径之间的关系。最后在学生们大胆猜测,积极求证之下推导出了圆的面积计算公式。通过了一些例题的练习和巩固,学生们基本掌握了如何利用面积公式计算圆的面积。
为了本节课的教学,自己经过了较长时间的精心准备,因此,从整个教学设计来看还做得较为可行,重点把握的比较准确。但是在具体实施教学时还是存在着几点不足:
1、课堂语言评价存在着较大的不足。平时比较不怎么注意这方面的培养,导致课堂气氛没有很好的被调动起来。因此,希望能通过平时课堂教学的磨练逐步改善这个缺点。
2、圆的面积公式推导及实践操作花费了较多的时间,所以在讲解推导过程中讲的不够透彻,学生理解还不过深入。如果当时在引导上能及时考虑到这一点,并给予更具技巧性的引导,或与能使学生理解的更加透彻,那么整个课堂讲显得更为饱满。
这学期的磨课活动虽然结束了,但它留给我的思考还是很多的,希望能在今后的教学中取长补短,积累经验,取得更大的进步。
2
圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。
一、感受圆的周长与面积的不同
本课开始,我先让学生比较圆的周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、学具演示,激发探究
生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。
三、分层练习,体验运用价值
结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。
在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。
一 、创设情境,导入新课。
课件演示:1、让学生想一想自动喷水装置喷水范围应该有多大呢?是什么形状?
2、现在你想提什么数学问题?
揭示课题:圆的面积
二、师生互动,推导公式。
1、认识圆的面积
a、什么是圆的面积呢?
c、圆的大小主要与哪些因素有关?(半径、直径、周长)
出示结语:圆所占平面的大小叫做圆的面积
2、 回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?(引导转化)
三、生生互动,推导公式
圆可转化为哪一个学过的图形呢?小组可以折一折、画一画、剪一剪、拼一拼,试试看!
1、小组讨论:设计方案,并汇报。
那么,有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)
c、请拿出手中的圆片试着折一折,展开来,看看你折成了几等份? 如果再折下去可以吗?现在就把你们折的这几种方案。(八等份、十六等份、三十二等份)
发现:平均分的份数越多,拼成的图形越接近长方形。
e、转化成长方形,推导圆的面积公式。
动手实践:沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。小组合作探究,动手摆一摆,边观察、边讨论、边推导,看哪组表现最好。
展现以下问题:(1)长方形的长相当于圆的()?(2)长方形的宽相当于圆的()?
(3)长方形的面积相当于圆的()?(4)因为长方形的面积=( ) 所以圆的面积=( )。
2、小组讨论后,并演示公式推导的全过程。
3、揭示字母公式( ) 。
小结:可见要求圆的面积只要知道什么就行?(半径)
四、练习巩固
1、运用公式学习例1。
学生试做,说理由,归纳总结。
2、完成基本练习(做一做)
五、解决问题
解决课件问题。
六、课堂总结
1、这节课我们发现了什么、学会了什么?
2、希望同学们在今后的学习中更好地运用好转化的方法去学习更多的数学知识。
七、课外作业
练习十六的1~3题
《圆的面积》教学反思
本节课充分体现了教为主导,学为主体的探究性自主学习与小组合作学习相结合的教学思想。并在师生互动、生生互动中去完成教学任务。由于学生已经有了探究三角形、平行四边形、梯形面积公式的经验。本课一开始我就鼓励学生回忆以前是如何研究平面图形的面积的呢?现在又如何探究圆的面积呢?刚开始学生有点不知所措。但现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。其次再通过把圆从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再让学生从这个长方形中找到圆的周长,从8等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于打下基础。
教育工作者对圆的面积教学的反思篇十
c、圆的大小主要与哪些因素有关?(半径、直径、周长)。
出示结语:圆所占平面的大小叫做圆的面积。
2、回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?(引导转化)。
圆可转化为哪一个学过的图形呢?小组可以折一折、画一画、剪一剪、拼一拼,试试看!
1、小组讨论:设计方案,并汇报。
那么,有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)。
c、请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?如果再折下去可以吗?现在就把你们折的这几种方案。(八等份、十六等份、三十二等份)。
发现:平均分的份数越多,拼成的图形越接近长方形。
动手实践:沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。小组合作探究,动手摆一摆,边观察、边讨论、边推导,看哪组表现最好。
展现以下问题:(1)长方形的长相当于圆的()?(2)长方形的宽相当于圆的()?
(3)长方形的面积相当于圆的()?(4)因为长方形的面积=()所以圆的面积=()。
2、小组讨论后,并演示公式推导的全过程。
3、揭示字母公式()。
小结:可见要求圆的面积只要知道什么就行?(半径)。
1、运用公式学习例1。
学生试做,说理由,归纳总结。
2、完成基本练习(做一做)。
解决课件问题。
1、这节课我们发现了什么、学会了什么?
2、希望同学们在今后的学习中更好地运用好转化的方法去学习更多的数学知识。
七、课外作业。
练习十六的1~3题。
本节课充分体现了教为主导,学为主体的探究性自主学习与小组合作学习相结合的教学思想。并在师生互动、生生互动中去完成教学任务。由于学生已经有了探究三角形、平行四边形、梯形面积公式的经验。本课一开始我就鼓励学生回忆以前是如何研究平面图形的面积的呢?现在又如何探究圆的面积呢?刚开始学生有点不知所措。但现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。其次再通过把圆从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再让学生从这个长方形中找到圆的周长,从8等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于打下基础。
教育工作者对圆的面积教学的反思篇十一
“圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。本节课基本体现教案设计的意图,能基本完成教学目标。以下有几点体会:
发现有的孩子在观察后凭直觉能马上提出猜想,而且这些猜想都含有很多合情推理的成分;当然也有一些孩子开始有“斗大的'馒头无从下手”之感,但经过同学间的交流,也逐渐有了较为明确的想法。当学生提出猜想后,我适时进行点拨,以促进学生的思维从合情推理水平向逻辑推理水平过渡。如我向学生提问:是不是这些猜想都是正确的呢?如何去证明?借机将解决问题的权利交给学生,让他们自己动手、动脑去证明,通过独立思考和小组交流,让学生对圆的面积有更深入的理解,教学难点也顺利突破。
在整节课堂,我重视学生知识的获得,更重视学生获取知识的过程。围绕引导探索教学模式中的提出问题分析问题解决问题一般结构进行,先由教师提出问题,怎样求圆的面积?然后由学生自己提出解决的方向,研究的目的明确后,由学生以小组为单位,合作进行拼成已学过的图形,并推导出公式,在整堂课中,剪拼、汇报、推导公式,都是学生自己完成的,教师放手让学生唱主角,注重学生的参与及体现了学生的主体性。
在课尾结束时,我问学生:“这节课有什么感受?”学生们纷纷回答,其中一位学生说到:“这节课我认为我们小组表现得非常好,如??”;“我认为甲同学今天表现得很好,可以评为今天的闪亮小明星。”??学生们不仅总结了这节课学到的知识,也总结了同学的上课表现,体现了人文关怀,得到同伴的赞扬更能激发学习的热情和自信心.
我原先设计的校园情景图,想让学生理解在我们周围,数学问题无处不在,让数学更贴新生活培养学生的一种数学意识,但由于多种原因没有用。同时,由于学生探究过程中会出现许多我料想不到的事情和结果,对老师的临场处理是个考验,每位教师都应具备良好的教学机智。
教育工作者对圆的面积教学的反思篇十二
圆是从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。因此,教学中,我让学生在观察、感知的基础上,动手操作,拼一拼,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导。通过本节课的教学,暴露出了一些实际问题,下面我将从以下几方面反思本节课的课堂教学。
本课开始,我引导学生回忆学过图形面积公式,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础识储备,为新知的“再创造”做好知识的准备。
让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
本节课我设计了三个练习:
1、让学生根据已知的半径求圆的面积。
2、让学生根据已知的直径求圆的面积。
3、利用已有知识解决生活中的实际问题。
练习的设计上由易到难,由形象到抽象,由具体到抽象。先是基础知识的练习;然后用圆的知识解决实际问题;最后发挥自己的智慧解决生活中的实际问题。每一道题都运用了本节课的知识,每一道题目的呈现方式又都不同。这样既能让后进生跟得上,又能让优等生吃得饱,从而让全班同学共同进步。
本课教学还有许多不足之处,在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。……希望以后通过自己的努力,教学水平能够不断提高。
教育工作者对圆的面积教学的反思篇十三
圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
学生通过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。
通过学生的操作,教师再运用flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。通过计算机的声、光、色、形,综合表现能力,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的积极性、主动性、创造性。
转载自 Www.kaOYaNmIJI.COm
将本文的word文档下载到电脑,方便收藏和打印。
教育工作者对圆的面积教学的反思篇十四
数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。
在讲授《圆的面积》一课时,由于学生熟悉了研究平面图形的思路:认识特征——周长——面积,所以范老师采用了复习旧知、直奔主题的引入方式,既有利于学生形成研究问题的思路,把新知识纳入已有的认知结构,又简洁明快,结构紧凑,为学生后面的探究提供了时间上的保证。
圆与学生以前探究的长方形、正方形、平行四边形、三角形、梯形等都有所不同,因为它是平面上的曲线图形,因此当范老师提出“怎么求圆的面积呢”,学生并不能马上找到解决的方法。有的学生一开始无从下手,这时,把时间给学生,把探究的空间给学生,充分相信学生能行,引导学生从头脑里检索已有的知识和方法,让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。
范老师能够深入了解学生探究圆面积的心理,知道有的学生脑子里不是一片空白的,尊重学生的原创思维。
通过探究,通过剪拼把圆转化成近似的平行四边形。引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。
当动手操作已经无法再完成时,范老师用课件动态演示,弥补操作与想象的不足,帮助学生进一步感知平均分的份数越多,剪拼成的图形越来越像平行四边形。围绕着“怎样更像”进行了一次又一次的追问,让学生充分地体验了“极限思想”。
本课重点是引导学生去经历探究圆的面积公式的过程,范老师充分体验“转化”和“极限思想”,所以安排比较少,虽然这节课只设计了几个基本练习来检验学生对圆的面积的理解和掌握程度,但这并不妨碍这节课的精彩。
教育工作者对圆的面积教学的反思篇十五
本节课把让学生履历圆的面积公式的推导历程定为讲授的紧张目的。在讲授中,我先让学生经过堆叠巨细差别的两个圆使他们觉得到圆的面积与半径有干系,再放手让学生运用转化的要领举行操纵,把一个圆通太过、剪、拼等历程,转化成一个类似的平行四边形,从中发明圆和拼成的平行四边形的接洽,并凭据长方形的面积公式推导出圆的面积的盘算公式。在这一历程中,不光使学生有用地明白和掌握圆的面积的盘算公式,并且也让他们得到了数学头脑要领,并造就了学生探究题目的本领。
完成数学信息的多向交换是当代讲堂讲授的紧张特性。在这节课的讲授中,变数学信息的单向传送为信息的多向交换。讲授历程中不光看重了老师经过多种本领向学生传送信息,更看重学生与学生之间及学生与讲授内容(课本)间的信息交换,促进了学生积极自动到场数学学习。
本节课的讲堂实习既有对圆的面积盘算公式的牢固性实习,也有运用圆的面积办理简略的现实题目的实习,另有综合运用长方形、圆的有关知识办理简略的现实题目的实习。经过这些实习,有助于学生牢固圆的面积的有关知识,构成运用技艺,造就学生的数学本领。
教育工作者对圆的面积教学的反思篇十六
《标准》在“教学要求”中,增加了“通过观察、操作、猜测等方式,培养学生的探索意识”的内容;在“教学应注意的几个问题”中,专门把“重视学生的探索意识和实践能力”作为一个问题进行论述,要求教师“依据学生的年龄特征和认知水平,设计探索性和开放性的问题,给学生提供自主探索的机会,让学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,理解数学问题的提出,数学概念的形成和数学结论的获得,以及数学知识的应用”,“形成初步的探索和解决问题的能力”。
在圆的周长这节课中,教师鼓励学生根据自己的“数学现实”理解情景,发现数学,打破封闭式的教学过程,构建“问题—探究—应用—反思”的开放式学习过程,体现学生是学习的主人,教师是教学活动的组织者、引导者和参与者。
教师巧妙地利用生活原型,激活与新知学习有关的旧知,引导学生从原来的知识库中提取有效的信息,通过观察、猜想、验证、交流,逐步得出大量的可信度较高的素材,然后抽象概括、形成结论,并进行应用。在这个过程中,通过学生探索与创造、观察与分析、归纳与验证等一系列数学活动,自主发现、合作探索圆的周长与直径的倍数关系,使学生感受到数学问题的探索性,并从中认识到数学思考过程的条理性和数学结论的确定性。
问题解决后,引导学生对探究学习的活动过程进行反思:面对一个实际问题,我们是怎样来解决的?从中提炼出解决问题、获得新知的数学思想方法和有效策略,并自觉地将思维指向数学思想方法和学习策略上,从中获得积极的情感体验。
总之,本节课在教学过程中,突出了知识的系统性,学生的`亲历性,尽量培养学生的主体意识和合作能力,问题让学生自己和同学之间的合作去揭示,方法让学生自己去探究,规律让学生自己去发现,知识让学生自己去获得。课堂上给学生以充足的思考时间和活动空间,同时给学生表现自我的机会和成功的体验,培养了学生的自我意识和合作能力,发挥了学生的主体作用。
教育工作者对圆的面积教学的反思篇十七
“圆的面积”在学生掌握面积的含义和矩形、正方形等平面图形的面积计算方法,理解圆并计算圆的周长的基础上进行教学。在本课程的教学设计中,我特别注重遵循学生的认知规律,关注学生从生活经验和已有知识中获取知识、学习数学和理解数学的思维过程。本节的教学主要突出以下几点:
首先,在学习新知识之前,引入新旧并渗透“变换”的思想,引导学生回忆以前探索矩形、平行四边形、三角形和梯形面积公式的推导方法,引导学生发现“转化”是探索数学知识的新途径,是解决数学问题的好方法,为探索圆的面积计算方法奠定了基础。
其次,大胆猜测,激发探索。
在强调圆面积的含义后,我让学生猜测圆面积可能与什么有关。当学生猜测圆的面积可能与圆的半径有关时,设计实验验证:画一个以正方形边长为半径的圆,用计算正方形的方法计算圆的面积,探索圆的面积大约是正方形的几倍。这一信息在旧教科书中不可用。学生的好奇心和求知欲得到充分调动,这些正是他们进一步开展探究活动的“根植”。
第三,手工切割和拼写,体验“学生猜测后,将歌曲变为直线,取出两张同样大小的准备好的光盘,将其中一张分成几个部分,然后拼成平行四边形或矩形。学生手工切割拼图后,选择2~3组进行观察比较,发现如果一个圆被均匀地分成更多的部分,那么图形越接近图形的平行四边形或矩形。然后比较圆与图形之间的关系。比较切割后,拼图形状与原始图形、与圆相关的部分和组合图形用彩笔进行标记,形成清晰的对比,为以后推导面积计算公式打下了充分的基础。
四、演示操作,感受知识的构成。
通过观察、比较和分析,找出圆的面积、周长和半径与组装的近似矩形的面积、长度和宽度之间的关系,并让学生推导出圆的面积计算公式。这样,从帮助到投入,从现象到本质,学生将始终参与如何将圆转化为矩形和平行四边形的探索活动,从而感受知识的构成。
v.分层实践与经验应用价值。
结合教材中的实例,设计了三个层次的基本实践、改进实践和综合实践,从三个不同层次测试学生的学习情况。首先,基础练习巩固计算公式的应用,强调标准化的写作格式。第二,改进练习,收集身边的实际数据,使本课所学数据与生活联系起来,灵活运用。第三,综合练习不仅要把以前学过的知识(给定圆的周长,先求半径,再求圆的面积)联系起来,还要锻炼学生的综合应用能力。在每个练习题的设置上,他们有不同的目的,并注意每个练习的指导重点。
但是,该课程的新课时间太长,实践不足,需要在今后的教学中加以注意。
教育工作者对圆的面积教学的反思篇十八
圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。
这几天一直对圆的进行研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。
本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
通过上面计算平行四边形面积的方法,探究圆的面积,如何计算圆的面积,学生有点不知所措。现在回想起来,应该先我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能能让学生解答出我的问题。通过学生观看一个个的图片,从8等份、16等份、32等份分圆再把圆片拼起来,从一个不规则图形,到近似是的一个长方形。再在这个长方形让学生中找到圆的周长,从4等份拼成的不规则图形到32图形拼成的近似一个长方形,从中得出规律。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,可能得到长方形的面积可能近似地看作圆的面积。最终推导出圆的面积公式。
反思,在这一节课中,我只是将圆面积推导过程,只是用学具的形式展现给同学们看,如果能让同学自己动手做一下,将一个圆平均分成32份,再自己拼一拼。这样学生对于圆的面积的知识认识会更加深刻。
在这一节课中,我总觉得缺乏学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。只是通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,在自己地引导中推导出圆的面积计算公式。学生思维在交流中虽有碰撞,在碰撞中发散,在想象中得以提升。但总觉得不够。在以后这一类的教学中,应该让思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在细节的设计还要精心安排。
教育工作者对圆的面积教学的反思篇十九
本课是在学习的圆的初步认识和圆的周长的基础上进行教学的,教学重点是理解圆面积的推导过程。
圆面积公式推导过程中隐含着一种重要的“转化”与“极限”数学思想方法。教学时我先让学生根据方格图大胆地猜想出圆面积的范围。之后在教师的启发引导下,通过学生的动手操作、观察、发现拼成的近似长方形的`长和宽与圆的什么有关,从而推导出圆的面积,使学生获得用转化法可以求出圆的面积,体现一种“化圆为方”、“化未知为已知”的转化思想。在此基础上让学生通过讨论、操作、探究得出圆面积的计算。这一过程的设计正体现了新课标所倡导的三维教学目标,由重结论向重过程转变。不仅重视学生数学知识的获得,更重视数学思想和数学方法的形成,使学生学得更有趣,更有价值。
教学中主要通过回忆、迁移、动手操作、自主探索,最后课件清晰演示加以辅助,理解圆面积公式的推导过程,从而突破本课的重难点。
教育工作者对圆的面积教学的反思篇二十
《圆的面积(二)》是在学生掌握了圆的面积计算公式的基础上进行教学的。主要是让学生利用圆的面积公式,解决生活中的一些实际问题,体会转化的数学思想。在本课的开始,我请学生回忆圆面积公式的推导过程。已知周长,求圆的直径、半径。在此基础上,让学生独立解决已知半径,求面积,已知直径,求面积,已知周长,求面积三个问题,学生在这种情况下,学习圆的面积计算,有利于知识的迁移。
在教学过程中,我从根据圆的半径,直径,求圆的面积,到根据圆的周长计算圆的面积,体验其中的不同,先让学生已知半径,求面积,已知直径,求面积,再到已知周长求面积,这样设计降低了教学难度,使学生明白要求圆的面积必须知道圆的半径,从而突破了教学难点。
在学生掌握了圆的面积计算方法以后,我让学生猜测,圆还可以转化成我们以前学过的什么图形,圆的面积与什么有关,让学生进行估测,当学生猜测出圆还可以转化成我们以前学过的三角形,圆的面积,可能与圆的半径有关系时,设计实验验证。沿半径把圆形杯垫剪开,并把纸条从长到短排列起来,观察并探索圆的面积公式,出示和圆有关的组合图形,让学生通过仔细观察与分析,结合前面学过的平面图形的面积知识,求出老师出示的组合图形的面积。学生的好奇心,求知欲被充分调动起来,而这些为他们随后进一步展开探索活动做好铺垫。
我在本节课中利用动画演示与动手操作相结合,加深学生对题目的理解,结合所学的知识,让学生学以致用,解决创设的情境问题等基础练习,提高练习,综合练习,拔高练习四个层次,从四个不同的层面对学生的学习情况进行检测。既巩固所学的知识,又锻炼了学生的综合运用能力,拓展学生的思维,注重了每个练习的侧重点,较好地完成了教学目标,学生学习积极性高,乐学,课堂气氛活跃、和谐,学生亲身经历提出猜想,动手实验、验证,得出结论的过程,对知识进行再创造。
教学中存在不足和需要改进的地方:没有加强训练小学生的计算能力,在上课过程中发现学生的计算速度比较慢,学生还没有达到熟练的程度,特别是当半径等于一个小数,这时学生最容易犯错。在以后练习中,重点训练小数的平方,达到正确解决问题的目的。