当前位置:网站首页 >> 文档 >> 最新等腰三角形教案(大全16篇)

最新等腰三角形教案(大全16篇)

格式:DOC 上传日期:2024-01-11 23:21:44
最新等腰三角形教案(大全16篇)
    小编:zdfb

在教学工作中,教案起到了指导教师教学活动的作用。编写教案时,要注重评价方法的选择和运用,以及及时的反馈和指导,以提高教学效果。推荐一些优秀的教案分享网站,供您查阅和学习。

等腰三角形教案篇一

本单元教学三角形的相关知识,这是在学生直观认识过三角形的基础上教学的,也是以后学习三角形面积计算的基础。内容分五段安排:第一段通过例1、例2第22~25页形成三角形的概念教学三角形的基本特征,三角形的高和底;第二段通过第26~27页教学三角形的分类,认识锐角三角形、直角三角形和钝角三角形;第三段第28~29页通过例4教学三角形的内角和;第四段通过第30~32页例5、例6认识等腰三角形和等边三角形及其特征。第五段第33~34页单元练习。全面整理知识,突出三角形的分类以及关于边和角的性质。

教材中的思考题有较大的思维容量,能促进学生进一步理解并应用三角形的知识。编写的三篇“你知道吗”介绍三角形的稳定性、制作雪花图案的方法和埃及的金字塔,能激发学生学习三角形的兴趣,丰富对三角形的认识。

1、让学生在“做”图形的活动中感受三角形的形状特点和结构特征。

空间与图形的概念教学,一般要让学生经历感知——表象——形成概念的过程,教材注意按学生的认识规律安排教学过程。学生在第一学段直观认识了三角形,本单元继续教学三角形的知识,教材经常采用“活动——体验”的教学策略,即组织学生“做”图形,让他们在做的过程中体会图形的特点,主动构建对图形的比较深入的认识。

(1) “做”三角形,感受边、角和顶点。第22页例题教学三角形的边、角和顶点,分三个层次编写:首先呈现一幅宜昌长江大桥的照片,引起学生对三角形的回忆,并联系生活里的三角形进行交流,感知三角形;;然后安排学生想办法做每人至少“做”一个三角形并在小组里交流进一步强化表象;;最后讲解三角形的边、角和顶点。

学生“做”三角形并不难,做的方法必定是多样的。用小棒摆、在钉子板上围、在方格纸上画三角形在第一学段都曾经做过,现在学生还可能剪、折、拼……“做”三角形的目的不在结果,要注重学生在做的过程中是怎样想的、怎样做的,把精力放在建立边、角和顶点等概念上。所以,交流的时候要分析各种做法的共同点,如用三根小棒、三段细绳、三条线段……才能“做”成三角形,三角形有三条边;小棒、细绳、线段……必须两两相连,三角形有三个顶点和三个角。

(2)围三角形,体会两条边的长度和必须大于第三边。《标准》要求:

通过观察、操作,了解三角形的两边之和大于第三边。这是新课程里增加的教学内容,第23页例题教学这个知识。教材通过学生的具体体验来使学生知道这一点。首先,为学生提供四根长度分别是10cm、6cm、5cm、4cm的小棒,向学生提出问题:任意选三根小棒,能围成一个三角形吗?然后让学生在操作中发现有时能围成三角形,有时围不成三角形,并直觉感受这是为什么。最后通过比较每次选用的三根小棒的长度,找到原因、理解规律。

例题的编写特点是不把知识结论呈现给学生,而让学生在“做”图形活动中发现现象、研究原因、体会规律。因此,教学这道例题时要注意三点:第一,课前作好充分的物质准备,力求让每一名学生都有长10cm、6cm、5cm、4cm的四根小棒。第二,课上要让学生自由地选择小棒,充分地围,经历围成和围不成三角形的过程,并给学生提供思考“为什么”的时间。第三,要引导学生从直觉感受上升到理性认识。在用小棒围的时候,他们的直觉感受是如果两根较短的小棒的另一端能够碰到一起,就围成了三角形;如果不能碰到一起,就围不成三角形。这种直觉感受是必要的,但不是最终的。要在直觉感受的基础上,进一步对三根小棒的长度进行分析研究,这才是“数学化”的过程,才能在获得数学结论的同时又学习用数学的方法进行思考。

(3)对图形量、剪、折,亲身感知并认识体会等腰三角形、等边三角形的特点。第30页的两道例题分别教学等腰三角形和等边三角形,认识等腰三角形和等边三角形,首先要感知各自的特点,教材注意突出教学的这一过程。都分三个层次教学:

第一层次是通过学生量三角形边的长度,理解“等腰”“等边”的含义;第二层次是仿照例题示范的方法剪出一个等腰三角形和一个等边三角形,继续体会它们的边的长度关系;第三层次是给出等腰三角形各部分的名称,发现等腰三角形、等边三角形的角的大小关系。其中第二层次的教学比较难。两道例题里“茄子”和“白菜”提的问题不同,前一道例题的问题是“用下面的方法剪成的三角形是等腰三角形吗”,因为学生容易看懂图文结合表述的剪法,通过这个问题引导学生关注到两条腰是同时剪的,长度肯定相同。后一道例题的问题是“你会像下面这样剪出一个等边三角形吗”,因为学生不容易看懂教材展示的方法,教材希望通过这个问题引导学生先研究剪法、弄懂剪法。关键在找到那个红色的点,先对折又斜折是为了让三条边的长度都相同。

2、从已有经验中提炼数学概念。

在具体的感性材料里提取本质特征,形成理性认识是概念教学的渠道之一。丰富的感性经验与清晰地认识特征是建立正确概念的前提。

(1)循序渐进,帮助学生逐步理解三角形的高。三角形的底和高是三角形里的重要概念,为了让学生自己感受底和高,教材用人字梁为素材,利用学生在生活中对人字梁“高度”的认识进行测量,感受三角形人字梁的高,以此为基础引入三角形高的概念。第24页例题、“试一试”以及“想想做做”里的部分习题把三角形高的教学分成四步进行:

第一步让学生量出人字梁图形的高度是多少厘米。这里讲的“高”度还是生活中的高,是从上往下竖直的距离。虽然与数学里的高含义不同,但也有相似的地方——垂直的、最短的。设计这一步教学的目的是唤醒已有的生活经验,营造认识三角形高的基础。第二步结合图形讲述三角形的高。学生对教材里的一段话,既要联系人字梁的高来体会,又要超越人字梁这个具体实物比较概括地理解。联系人字梁的高能降低理解概念内涵的难度,超越人字梁具体实物才能形成真正的数学概念。教材表述的是三角形高的描述式定义,描述了高的位置,描述了画高的方法。教学时可以把教师边画边讲与学生边描边体会相结合,重在对概念的理解,不要死记硬背。第三步通过“试一试”扩大概念的外延。数学里平面图形的高的本质属性是“垂直”而不是“竖直”,竖直是“从上往下”,垂直是“相交成直角”。例题教学三角形的高先从竖直的位置讲起,“试一试”举出各种摆放位置的、不同类型的三角形以及不同边上的高,要求学生测量三角形的高和底的长度,使学生在操作中进一步体会高的概念,认识只要是从一个顶点到对边的垂直线段就是三角形的高,感受底和高的相应关系,进一步理解三角形底和高的意义。这样让学生准确地理解概念的内涵,全面地把握概念的`外延,深刻地体会高与底之间的对应联系。第四步通过“想想做做”p25第1题的画高练习,进一步感受描述式定义,巩固对高的理解。其中最右边的是直角三角形,它的两条直角边互为高和底,学生在画高的时候能够体会到这一点。另外让学生阅读资料了解三角形的稳定性三角形的稳定性是其重要特性,教材安排了“你知道吗”,让学生通过阅读并做实验体会这一特性。这里注意一点本册教材知识要求学生画请指定底边的高,这些高都是在三角形里面的,三角形外的高不做要求。还有就是在作图的时候一定要注意一些作图规范。

(2)联系对直角、锐角、钝角的认识,引导学生探索三角形的分类。三角形的分类教学,必须使学生在充分的感知中体会三个内角大小有几种情况,理解三角形分类的方法及分类的合理性。第26页例题让学生在给角分类的活动中体会三角形的分类。首先呈现了6个不同形状的三角形,要求学生仔细观察各个三角形的每个角是什么角,并把观察结果填在预设的表格里。然后引导学生分析研究表格里的数据信息,发现有些三角形的三个角都是锐角,有些三角形里有一个直角和两个锐角,有些三角形里有一个钝角和两个锐角,从而引发可以给三角形按角分类,获得直角三角形、锐角三角形和钝角三角形的认识,掌握不同三角形的特点。准确而精炼的语言总结了什么样的三角形是锐角三角形、直角三角形和钝角三角形。最后还用集合图表达三角形的分类以及各类三角形与三角形整体的关系。

教学三角形的分类要特别注意三点:第一,必须组织学生积极参与分类活动,在独立思考的基础上合作交流,逐渐形成共识。第二,要扣紧概念的关键,让学生理解为什么锐角三角形强调三个角都是锐角,直角三角形和钝角三角形只讲一个直角或一个钝角,从而掌握判断时的思考要点。如第33页第2题里左边和中间的三角形能确定它们分别是钝角三角形和直角三角形,因为在图中分别看到了1个钝角和1个直角。右边的三角形只看到1个锐角,不能确定它是什么三角形。第三,要用好第27页“想想做做”第3~7题,让学生在图形的变换中加强对各类三角形的认识。认识了三角形的分类,还要通过具体的观察、判断和操作、画图等活动进一步巩固对不同三角形的认识。教材在这方面有比较多的安排。例如p27的“想想做做”第3~7题,分别让学生判断各是什么三角形,巩固对各类三角形的认识;围出、折出、剪出和画出指定的三角形,使各类三角形的表象再现。特别是第7题是一道开放题,可以让学生通过画一画、说一说,互相交流,加深对各类三角形的认识,掌握各类三角形的特征。

3、从特殊到一般,通过实验得出三角形的内角和是180°。

让学生“了解三角形的内角和是180°”是《标准》规定的教学内容和教学要求,这里讲的“了解”不是接受和知道,而是发现并简单应用。教材安排三角形内角和的学习,主要让学生由特殊到一般,通过自己的探索活动认识与掌握三角形内角和是180°。

(1)第28页教学三角形的内角和,采用了“质疑——解疑”的教学策略,实验是策略的核心,是解疑的手段。

首先计算同一块三角尺上的3个角的度数和。由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°。并由此产生疑问:其他三角形的内角和也是180°吗?由此产生学习的愿望。接着安排学生通过实验解疑,用实验的方法验证、确认三角形内角和的结论。把一个三角形的3个角拼在一起,从拼成的是平角得出3个角的度数和是180°。教材要求小组合作,剪出不同类型的三角形进行实验,通过实验获得直接认识,验证自己的猜想,从而确认三角形的三个内角的和是180°,得出结论。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。最后并通过“试一试”,应用三角形内角和求未知角的度数,巩固三角形内角和的结论。

(2)为了让学生深刻地理解三角形内角和的规律。在认识三角形内角和以后,教材通过应用促进学生掌握这一内容,并应用解决问题。如p29.“想想做做”1~3题,应用三角形内角和求未知角的度数,在三角形的变换中判断内角和各是多少,巩固所获得的结论;。“想想做做”巧妙地设计了两道辨析题一道是第2题:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?另一道是第3题:正方形内角和360°,对折出的三角形内角和180°,再对折成的小三角形内角和又是多少呢?解答这两道题时,学生的思考会在180°和360°以及180°和90°不同答案上碰撞,碰撞的结果是进一步认识三角形的内角和是一个普遍规律,不因三角形的大小而改变,不因拼、折等图形变换而改变。另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是解释为什么直角三角形里只有1个直角,钝角三角形里只有1个钝角。第6题,通过思考一个三角形中最多有几个钝角或直角,并应用三角形内角和的知识合理解释,加深认识三角形内角和及钝角三角形、直角三角形的特征。

4、注意三角形知识的内在联系

三角形的分类是按角的大小为标准的,而等腰三角形和等边三角形是以边的长度特点来定义的。不同特征的三角形中又存在内在联系,认识三角形应该让学生了解这些联系。在p31~32第2~4题里,就让学生了解等腰三角形可以同时是直角三角形、锐角三角形或钝角三角形,体会等腰三角形都是轴对称图形。p33第2题通过判断,进一步认识钝角三角形、直角三角形分别只有一个钝角或直角,而每类三角形都有锐角,即只看一个锐角无法判断是什么三角形。第3题使学生体会两个一样的直角三角形,可以拼成三角形,也可以拼成四边形,而且可以有不同的拼法。第5题需要综合本单元学习的三角形知识,依据三角形边长之间的关系,选择小棒按要求摆出等腰三角形和等边三角形。第6题,要应用对等边三角形特征的认识进行解释,第7题,让学生观察三角形判断各是什么三角形,感受可以从不同角度判定一个三角形是什么三角形,体会知识之间的内在联系。

5.注意培养学生的空间观念

观察、举例、做图形感受三角形

在p22例题里,引导学生先观察情景中的三角形,举出日常生活里接触过的三角形,加强三角形的表象,同时还要求学生做一个三角形,p23第1题也要求学生画三角形,把表象转化成具体的三角形再现出来,形成三角形的空间形象。

学生在看、围、折、剪等活动中获得各类三角形特征的直接体验

在空间与图形的学习中,引导学生实际操作,具体感受所学图形,积累对其形状、大小、位置关系的的感性认识,可以发展空间观念。教材在p27第2题通过观察、判断加强不同三角形形状的直接感受,第3~6题让学生围、折、剪图形,依据头脑里的表象再现出相应的图形,可以培养空间观念。第7题,需要依据三角形的特点进行分析、判断,知道可以分成两个怎样的三角形,才能有不同的分法。这些都有利于空间观念的发展。

让学生折一折、剪一剪、画一画掌握等腰三角形和等边三角形的直观形象

同样地,在认识等腰三角形和等边三角形时,也注重学生的动手实践,促进空间观念的发展。如p30、p31例中折一折、剪一剪,得出相应的图形,进一步体验各自的特点;p31“想想做做”第2~4题,也是动手剪一剪、画一画图形,并运用对图形特点的认识辨析相关图形,也是加强空间观念的手段与方法。

等腰三角形教案篇二

(12月20日备12月日授)主备人:张洋杨超审核:吴国玺姓名:学号。

教学目标:使学生进一步理解三角函数的定义,及应用。

一、基础知识回顾:

1、仰角、俯角2、坡度、坡角。

二、基础知识回顾:

1、在倾斜角为300的`山坡上种树,要求相邻两棵数间的水平距离为3米,

那么相邻两棵树间的斜坡距离为米。

2、

等腰三角形教案篇三

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

等边三角形的判定定理和直角三角形的性质定理。

能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学后记

教师活动学生活动

一、定理:一个角等于60°的等腰三角形是等边三角形

1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

二、一种特殊直角三角形的性质

1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

4.让学生准备一张正方形纸片,,按要求动手折叠。

5.讲解例题,应用定理。

6.布置学生做练习。

练习:课本随堂练习1

三、课堂小结:

通过这节课的学习你学到了什么知识?了解了什么证明方法?

四、作业:同步练习

1.积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

2.积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。

3.认真听讲,体会分类讨论的数学思维方法,理解定理。

1.积极动手操作,并很快得到结果:可以拼出等边三角形。

2.在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

3.认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

4.很有兴趣地折叠纸片,体会定理的应用。

5.听讲,体会定理的应用。

6.认真做练习。

(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)

等腰三角形教案篇四

是边的长、和是由用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.中,,求。

bc。

边的长.

画出图形,可知边。

ac。

bc。

和三个元素的关系是正切函数(或余切函数)的定义给出的,所以有等式。

由于,它实际上已经转化了以。

bc。

为未知数的代数方程,解这个方程,得。

即得。

bc。

的长为.中,,求这个三角形的未知的边和未知的角(如图)。

这是一个锐角三角形的解法的问题,我们只需作出。

bc。

边上的高(想一想:作其它边上的高为什么不好.),问题就转化为两个的问题.可由解时求出,那时,它也将转化为可解的直角三角形,问题就迎刃而解了.解法如下:

解:作于。

d

在rt中有是正。

n

边形的。

n

oam。

oa。

是半径,

om。

是边心距,

ab。

是边长的一半,锐角.的长为。

等腰三角形教案篇五

本课认识等腰三角形和等边三角形已经它们的特征。教材先给出有两条边相等的锐角三角形、直角三角形和钝角三角形各一个,让学生量一量每个三角形各条边的长,发现它们的共同特点是有两条边相等,然后概括等腰三角形的概念。接着通过用纸对折简出等腰三角形,使学生进一步体会等腰三角形的特征。最后认识等腰三角形各部分的名称,明确等腰三角形的两个底角也相等。认识等边深刻系的编排与等腰三角形类似,其中等边三角形的3个角都相等的特征是让学生在对折中发现的。

认识等腰三角形和等边三角形以及它们的特征

1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。

2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。

3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。

长方形、正方形纸,剪刀、尺等

一、复习:关于三角形,你有那些知识?

1、按角分成三种角

2、三个内角和是180度

二、认识等腰三角形

1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)

有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。)

指出:像这种两条边相等的三角形,我们叫它等腰三角形

2、折一折、剪一剪

取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开

观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。)

除了两条边是相等的,还有什么也是相等的?你是怎么知道的?

等腰三角形教案篇六

这一节课主要学习等腰三角形“等边对等角”及“底边上的高、底边上的中线、顶角的平分线互相重合”的性质.本节内容既是前面知识的深化和应用,又是下节学习等腰三角形和等边三角形判别的预备知识,还是证明角相等、线段相等及两条直线互相垂直的依据。学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要,起着承前启后的作用。

在此之前,学生已学习了轴对称图形,这为过渡到本节的学习起着铺垫作用。初二学生心理和认知发展规律要求在教学中要充分调动他们的激情,他们不喜欢鼓噪无味的数学课堂。根据认知理论和心理学的基本原理,学生对所学知识的掌握是通过感知阶段、理解阶段、巩固(记忆)阶段、应用(迁移)阶段的发展实现的,知识的掌握如此,思维能力的培养也是如此,也应遵循认知迁移的规律,逐极展开。

1、知识和技能目标:

能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质。

2.过程和方法目标:

经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。

3.情感和价值目标:

培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心。

1.教学重点

等腰三角形的性质及应用

2.教学难点

等腰三角形性质的建立

教学过程

等腰三角形教案篇七

1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。

2.通过学生之间的交流活动,培养学生主动与他人合作交流的意识和良好的学习习惯。

【学习重点】。

探索和掌握等腰三角形的性质及其应用。

【学习难点】。

【学习过程】。

一、你知道吗?

等腰三角形教案篇八

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学后记。

教师活动学生活动。

一、定理:一个角等于60°的等腰三角形是等边三角形。

1、引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2、肯定学生的回答,并让学生进一步思考:有一个角是60°的`等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

3、关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

二、一种特殊直角三角形的性质。

1、让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

3、演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

4、让学生准备一张正方形纸片,,按要求动手折叠。

5、讲解例题,应用定理。

6、布置学生做练习。

练习:课本随堂练习1。

三、课堂小结:

通过这节课的学习你学到了什么知识?了解了什么证明方法?

四、作业:同步练习。

1、积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

2、积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。

3、认真听讲,体会分类讨论的数学思维方法,理解定理。

1、积极动手操作,并很快得到结果:可以拼出等边三角形。

2、在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

3、认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

4、很有兴趣地折叠纸片,体会定理的应用。

5、听讲,体会定理的应用。

6、认真做练习。

(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)。

等腰三角形教案篇九

本人在等腰三角形性质(第三课时)的教学中,教学方法是采用“目标--问题”的教学方法,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。本着“问题是数学的心脏”原则,精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的问题在答问过程中还不时得到本人的提醒,这样导致的结果是难于发现学生真实的思维过程。“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的程度。但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养。问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间。目标--问题教学法的本质在于:在问题解决过程中培养学生问题意识和发现问题、提出问题的能力。令人遗憾的是本节课由于教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。而在探索问题的关键时候,本人也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。

教学永远是一门遗憾的艺术,吹尽黄沙始现金,我们只有以“没有最好,力求更好”来不断改进我们的教学,才能实现真正意义上的与时俱进。

等腰三角形教案篇十

1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。

2.通过学生之间的交流活动,培养学生主动与他人合作交流的意识和良好的学习习惯。

一、你知道吗?

课前预习。

sssasaaashl。

2.这条线段的两个端点的距离相等。

3.这个角的两边的距离相等。

4.这样的点有4个。

知识点睛。

1.线段垂直平分线上的点到这条线段的.两个端点的距离相等。

2.角平分线上的点到这个角的两边距离相等。

3.顶角的平分线底边上的中线底边上的高三线合一。

1、填空题。

2、如图,以等腰直角三角形aob的斜边为直角边向外作第2个等腰直角三角形aba1,再以等腰直角三角形aba1的斜边为直角边向外作第3个等腰直角三角形a1bb1,如此作下去。若oa=ob=1,则第个等腰直角三角形的面积。

等腰三角形教案篇十一

今天,老师在数学课上出了这么一道题:一个等腰直角三角形的斜边长是8厘米,求面积。老师刚说完题目,同学们就议论纷纷,时间一分一秒地过去了,可还是没有一个人举手,我忽然灵机一动,想到了一种解法,我便举起手。老师见了连忙让我回答;我说:“作等腰直角三角形斜边上的高,这个等腰三角形既然有一个角是直角,那么这个角是90度,另外两个角分别是45度,度数之间的关系是倍数关系。则斜边与斜边上的高也是倍数关系;可知斜边上的高是斜边的一半。即高就是8÷2=4(厘米)。然后再根据三角形的面积公式求等腰直角三角形的面积。算式是8×4÷2=16(平方厘米)。老师听了满意地笑了,忽然我不知哪来的灵感又想了一种解法,于是,我鼓起勇气对老师说还有一种方法,老师听了高兴地说:“说吧”。“把这个等腰直角三角形对折后再打开,沿折痕剪开,将两个小等腰直角三角形拼成一个正方形,边长是原等腰直角三角形斜边的一半,即8÷2=4(厘米)。这个正方形的面积就是原等腰直角三角形的面积”。算式是4×4=16(平方厘米)。我刚说完教室里响起了一片热烈的'掌声。

老师听了我说的两种方法神秘地说:“还有什么方法。”大家听后想莫非这道题还有其它解法;正在大家苦思暝想网的时候,班长小红把手举得高高的,老师请她站起来说:“还可以用两个这样的等腰直角三角形拼成一个大等腰直角三角形,这个大等腰直角三角形的直角边就是原等腰直角三角形斜边的长8厘米,原等腰直角三角形的面是拼成大等腰直角三角形面积的一半,算式是:8×8÷2÷2=16(平方厘米)。还可以用四个这样的等腰直角三角形拼成一个正方形,正方形的边长是等腰直角三角形斜边的长8厘米,正方形面积的四分之一就是这个等腰直角三角形的面积,算式是8×8÷4=16(平方厘米)。对这精彩的回答,周围又响起了一阵热烈的掌声。

等腰三角形教案篇十二

1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。

2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。

3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。

1、什么叫证明?什么叫定理?

2、证明与图形有关的命题,一般步骤有哪些?

设计说明:师提出问题,回顾旧知识,达到温故而知新的目的,学生以小组为单位讨论交流。

观察图片。

1、什么叫做等腰三角形?(等腰三角形的定义)你能用刻度尺华画一个等腰三角形吗?

3、上述性质你是怎么得到的?(不妨动手操作做一做)。

4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?

1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。

2、思考与讨论:说明你所画的是顶角的平分线。

怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。

定理:等腰三角形的两个底角相等,(简称:“等边对等角”)。

定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”)。

4、你能写出上面定理的符号语言吗?

5、总结。

等腰三角形教案篇十三

1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

重点:等腰三角形的性质及应用。

难点:等腰三角形的性质证明。

等腰三角形教案篇十四

等腰直角三角形是特殊的等腰三角形(有一个角是直角),也是特殊的'直角三角形(两条直角边等),因此等腰直角三角形具有等腰三角形和直角三角形的所有性质(如三线合一、勾股定理、直角三角形斜边中线定理等)。

当然,等腰直角三角形同样具有一般三角形的性质,如正弦定理、余弦定理、角平分线定理、中线定理等。等腰直角三角形三边比例为1:1:√2。

利用勾股定理。

两条直角边的平方和=斜边的平方。

如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。还有就是可以利用在直角三角形中,30°的角所对的直角边等于斜边一半,利用所对的那个直角边也可以求出来。

等腰三角形教案篇十五

今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:

(一)突出重点,实现教学目标。

《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。

(二)导课自然,成功引入新课。

首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。

(三)设置有梯度,学生易于接受。

在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果,这节课,也有不足的地方:

1、在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。

2、上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的`应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。

等腰三角形教案篇十六

察、分析、归纳概括,主动获得知识。

(2)组织学生欣赏图片,激发学生的学习兴趣,让学生获得知识,提高能力。

(3)在教学中,向学生渗透数学思想方法,培养学生说理的能力。

三、教材分析:

1、等腰三角形是在三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

2、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。

3、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

4、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。

5、如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。

6、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。

7、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。

8、课本为学生提供自主探索的空间,然后在进行证明,将探索和证明有机的结合起来,引导学生不断感受证明的必要性。

四、教学方法。

本节课采用合作探究的教学方法,在教师的引导下,通过合作探究的方式、发现、分析问题并解决问题,为学生提供从事数学活动的机会,帮助学生进行自主探究与合作交流。以活动形式展开教学,综合运用启发式、多媒体演示、互联网探索等教学手段,培养学生的.主体意识。

五、教学过程。

教学目标:

1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。

2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。

3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。

教学难点:证明过程的书写格式,用规范的符号语言描述证明过程。

教学媒体:多媒体。

六、教学过程:

(一)回顾知识。

1、什么叫证明?什么叫定理?

2、证明与图形有关的命题,一般步骤有哪些?

设计说明:师提出问题,回顾旧知识,达到温故而知新的目的,学生以小组为单位讨论交流。

(二)创设情境。

观察图片。

1、什么叫做等腰三角形?(等腰三角形的定义)你能用刻度尺华画一个等腰三角形吗?

2、你能画出它的顶角平分线吗?等腰三角形有哪些性质?

3、上述性质你是怎么得到的?(不妨动手操作做一做)。

4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?

(三)探索活动。

1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。

2、思考与讨论:说明你所画的是顶角的平分线。

怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。

定理:等腰三角形的两个底角相等,(简称:“等边对等角”)。

等边对等角_百度百科。

bdc4、你能写出上面定理的符号语言吗?

5、总结。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:2.99元 10元
微信扫码支付
b.包月复制
付费后30天内不限量复制
特价:6.66元 10元
微信扫码支付
联系客服