通过总结,我们可以更好地了解自己的价值和作用。在写总结时,要确保准确表达自己的想法和观点。对于这个话题,以下是一些相关的论文和研究成果,供大家了解和分析。
数学公式篇一
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;。
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴;。
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》。
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;。
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;。
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;。
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;。
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;。
三、《不等式》。
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
四、《数列》。
等差等比两数列,通项公式n项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。
数学公式篇二
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第。
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的.式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
数学公式篇三
总数份数=每份数。
2.1倍数倍数=几倍数。
几倍数1倍数=倍数。
几倍数倍数=1倍数。
3.速度时间=路程。
路程速度=时间。
路程时间=速度。
4.单价数量=总价。
总价单价=数量。
总价数量=单价。
5.工作效率工作时间=工作总量。
工作总量工作效率=工作时间。
工作总量工作时间=工作效率。
6加数+加数=和。
和-一个加数=另一个加数。
7被减数-减数=差。
差+减数=被减数。
8因数因数=积。
积一个因数=另一个因数。
9被除数除数=商。
被除数商=除数。
商除数=被除数。
数学公式篇四
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;。
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴;。
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;。
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任庖缓扔诤竺媪礁s盏脊骄褪呛茫夯蟠蠡。?nbsp;。
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;。
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;。
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;。
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;。
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
等差等比两数列,通项公式n项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与x轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
数学公式篇五
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
解不等式的途径,利用函数的`性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
等差等比两数列,通项公式n项和。两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:
首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。
虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。箭杆与x轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。
一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。
利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,
减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。
三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。
辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
数学公式篇六
an=a1+d。
如题a1=3,an=a+3,a100与300比。
2.三角形面积。
s=底高/2,高,底。
3.圆。
圆周长=2d。
圆面积=r2。
弧长和圆心角弧长/圆周长=弧所对应角度/3600。
4.圆柱体。
体积=r2h。
圆柱体的表面积=2r2。
5.平面坐标系。
y=kx+b,k为斜率。
x=0求y截距,y=0求x截距。
6.利润。
利润=收入-花费。
利润=销售价-成本。
7.个位数。
1781的个位数为7,2635的个位数为6。
8.一个数能被11整除的特征。
如果这个数奇数位上的的数字之和和与偶数位上的数字之和的差是11的倍数,那么这个数能被11整除。
9.百分比的变化。
增长的百分比=增长量/原来的量,降低的百分比=减少量/原来的量。
数学公式篇七
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
减正等于加负,减负等于加正。
有理数的`乘法运算符号法则。
同号得正异号负,一项为零积是零。
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
数学公式篇八
表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
2.求定义域。
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
3.解一元一次不等式。
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
4.解一元一次不等式组。
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同项取两边,异项取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,“同小相对取较小”
敬老院以老为荣,“同大就要取较大”
军营里没老没少。“大小小大就是它”
大大小小解集空。“小小大大哪有哇”
5.解一元二次不等式。
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
a正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
6.用平方差公式因式分解。
异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。
7.用完全平方公式因式分解。
两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。
数学公式篇九
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
2.因式分解。
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
3.因式分解。
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
数学公式篇十
1.首先,课堂上,老师讲这些公式的时候,我们需要认真听讲这样才可以理解这些公式的内容。
2.接着,对公式进行梳理归纳,我们在背诵这些公式之前,要清楚的,理解他们的意思。
3.理解好这些数学公式的内容之后,我们就需要通过做题来巩固,加深,自己的印象了。
4.在做关于数学公式的题目时,我们必须进行归纳。而不能只是一味的做题,这样是没有效率的。
5.数学公式并不难理解,但在做题时,要很好的运用却也是一个难题。这就需要我们的总结归纳了。
6.在我们做题和阅读这些题目的时候,要将相同的题型,进行总结。反思自己的错误以及如何避免相同的错误。
数学公式篇十一
通项公式:
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。成立。
假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r。
则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
=a(1)+a(2)+...+a(n)。
=a+(a+r)+...+[a+(n-1)r]。
=na+r[1+2+...+(n-1)]。
=na+n(n-1)r/2。
同样,可用归纳法证明求和公式。
a(1)=a,a(n)为公比为r(r不等于0)的等比数列。
通项公式:
a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).
可用归纳法证明等比数列的通项公式。
=a(1)+a(2)+...+a(n)。
=a+ar+...+ar^(n-1)。
=a[1+r+...+r^(n-1)]。
r不等于1时,
=a[1-r^n]/[1-r]。
r=1时,
=na.
同样,可用归纳法证明求和公式。
数学是应用性很强的学科,做题是数学学习过程中必不可少的环节。甚至有同学说,学习数学就是学习解题,因此数学要诀就在每天做题上。做数学题应注意以下几点:
一、精做题。
做题不是做得越多越好,而是做得越精越好。怎样才算“精”呢?学会“解剖麻雀”。充分理解题意,注意分析题型,深化对题中每个条件的认识,看看与哪些数学基础知识相联系,做完题,还要针对自己做错的题,分析自己当时想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,以便挖掘出一些好的数学思维方法;一题多解,一题多变,多元归一。
二、做难题。
取得黑龙江省高考文史类第三名好成绩的李宏霞同学,认为坚持做难题,做大题才是制胜的法宝。她说,数学中的基础题因然很重要,但高分的关键则是综合性强、难度大的最后两三道大题,即所谓“拉分题”。因此,她在复习时坚持有规律地做这类题目。由于题目难度高,所以每次做的题量不要太大,一次做四五道即可,同时,要注意选择的题目要有代表性、要全面,同一题型的题选二三道即可,要注意方法的积累和运用。
三、天天做题。
熟练解题一定要有量的积累。天天做题就是保证做题的数量的方法。同学们可以制定一个计划,每天要求自己做五道题目,或十道题目,根据自己的情况确定,如此坚持下去,做题越做越快,并且培养起相当的自信心。
【总结】“数学要诀:每天做几道数学题”就为大家整理到这里了,希望大家在高三期间好好复习,为高考做准备,大家加油。
数学教学心得。
当前高一数学教学方面存在着一些认识上的误区,主要表现在学生的学习态度和方法上没有摆脱初中阶段对数学学习的认识,学生普遍学习兴趣不高。由此提出了几点看法和做法。
作为一名数学教师,在高一年级的一年教学过程中,通过不断的学习和钻研教育教学方法,以及与广大同学的接触交流,了解到许多学生甚至教师在教学中存在不少认识上的误区,主要有以下几项体会。
第一、高一年级的学习阶段标志着学生学习进入了一个新的时期,在学习的方法上,学习的认识上,学习的深度上与初中阶段的数学学习完全不同,但是从学生的`角度讲,普遍学习兴趣不高。学生自认为初中数学成绩不错,没有必要投入更多的精力也可以轻松地完成数学课程学习,上课也好,作业也好,时常不认真对待,马虎应付,主动性差。真实的情况是,高中数学学习不仅仅是把初中知识再加热,而是从一个更新的角度的学习,把仅仅停留在模仿阶段的学生的知识,从理解联系的角度更新诠释,进而训练学生的逻辑思维,进行探究性的学习,使学生脱离机械记忆的层面,开始学会在逻辑思考的前提下用联系的观点来看问题。
第二、对学生来讲,初中的数学学习的机械记忆方法,存在着学习的惯性,依然影响了学生的学习方法。到了高一阶段,大部分学生的学习习惯,仍然停留在单纯的机械记忆的层次上,难以适应高中的数学学习,很多学生对我讲,平时花费了相当多的时间背,记数学知识,可考试成绩还是不见长进,不知道为什么?显得很苦恼,学习的兴致一天天被消磨掉了。
因此,我深刻体会到,高中数学教师除了把数学知识传授给学生以外,更加重要的责任是逐渐诱导改变学生的学习习惯,使其自觉或不自觉走到高中数学教学所要求的轨道上来。
通过教学实践,我个人认为:
第一、高一数学教学以培养学生的学习兴趣、逻辑思维能力和情感态度为教学目标,为高二时期的学习打下良好基础。
第二、拓展课堂教学内容,增加课外知识加强相关的知识模块教学。
数学公式篇十二
大月(31天)有:1\\3\\5\\7\\8\\10\\12月。
小月(30天)的有:4\\6\\9\\11月。
平年2月28天,闰年2月29天。
平年全年365天,闰年全年366天。
1日=24小时1时=60分。
1分=60秒1时=3600秒。
面积、体积换算。
(4)1公顷=10000平方米1亩=666。666平方米。
(5)1升=1立方分米=1000毫升1毫升=1立方厘米。
数学公式篇十三
要背的给你介绍点方法数学公式众多,要记清每一个,真的是不容易。往往是记这忘那的,怎么办才能记得更牢固?这真是个难题呢。但是,也得解决呀,那就是:
第一,在理解中记忆。把一个公式的背景理解了,再记公式。比如,等差数列求和公式,你得会自己推导,把它当一个例题来做。就这个公式而言,也可形象地把等差数列看阶梯,象个梯形面积公式。
第二,多背。只有多看多记才行。这是最基本原理,放之四海而皆准。重点就是一个“多”字。
第三,做题中记忆理解公式。千万不要“简单题不用做,难题不会做”,简单题做一做,为了记公式。要准确,不能老是翻书。
第四,要讲点技巧。比如三角函数里的诱导公式,真的要理解书上那句黑体字意义。第五,把所有公式写成一个纸卡,放在床头,睡前看。这个是具体好办法呢。永不放弃。
数学公式篇十四
有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
数学公式篇十五
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)。
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解。
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例。
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫和比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等和分比。
前项和比后项和,比值不变叫等比。
解比例。
外项积等内项积,列出方程并解之。
求比值。
由已知去求比值,多种途径可利用。
活用比例七性质,变量替换也走红。
消元也是好办法,殊途同归会变通。
正比例与反比例。
商定变量成正比,积定变量成反比。
正比例与反比例。
变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
判断四数成比例。
四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
判断四式成比例。
四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
比例中项。
成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
根式与无理式。
表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
求定义域。
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
解一元一次不等式。
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组。
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同项取两边,异项取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,“同小相对取较小”
敬老院以老为荣,“同大就要取较大”
军营里没老没少。“大小小大就是它”
大大小小解集空。“小小大大哪有哇”
解一元二次不等式。
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
a正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。
两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。