教案是教师为了课堂教学而编制的一份详细的教学计划。编写教案时要注重语言的准确性和简明易懂性,便于学生理解和运用。下面是一些老师分享的教案范文,供大家参考学习。
三的倍数教案设计篇一
骆老师能找准学生的知识起点,激活学生的学习经验。创设的情境合理:既能符合儿童心理有趣味,又能启发学生深入思考:这个活动或游戏隐藏了什么数学问题?能获得什么解决问题策略?每节课,学生都积极动手,主动合作,踊跃交流…。智慧的火花在课堂中不时闪现,愉悦的神情在小脸上洋溢。
xx老师的教学内容是五年级的“最小公倍数”,通过设计生动有趣的智力游戏“动物尾巴重新接回”创设情境激发兴趣,寻找公倍数与最小公倍数的奥秘。课堂围绕主要问题“尾巴重新接回的奥秘到底是什么?”引导学生展开积极的.思考、热烈的讨论。老师以“为什么重新接回的次数就正好是多边形边数的公倍数呢?”激发学生创新思维,引导学生汇报交流,课堂结束后,学生与现场观众还沉浸在对“奥秘”的进一步思考中。
三的倍数教案设计篇二
该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。
三的倍数教案设计篇三
1.学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。
2.通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3.在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。教学重点:理解公倍数和最小公倍数的含义。
三的倍数教案设计篇四
1、利用情境引入新课,通过月历探索新知。学生在月历上找出4和6的倍数的日期,清楚形象的看到两个数的倍数关系。
2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。学生探索后,引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,用自己的语言梳理新知,使学生在环环相扣的教学进程中顺理成章的理解概念,把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念,沟通二者之间的联系。
3、创设问题情境,尝试应用,方法提炼。结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。
4、巩固练习、不断刺激,不断巩固提升。先让学会用最基本的方法求两个数的最小公倍数。再用这样的知识解决生活中的排队问题,用富有生活气息的情境,激发学习兴趣,再次打通生活与数学的屏障。接着是找生日,铺墙砖,让用数学方法来解释生活现象,感受到求公因数与求公倍数的联系。
4、学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。
总之,本节课体现了这样的设计理念:将直观演示与抽象思维相结合,让学生在自主参与的基础上感悟、理解、应用、巩固。
三的倍数教案设计篇五
一、谈话导入,揭示课题。
我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。
板书课题:3的倍数的特征。
二、探索交流、获取新知。
(一)活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。
(二)活动二:探索研究3的倍数的特征。
1、在书上第6页的表中,找出3的倍数,并做上记号。
(先独立完成,看谁找的快?)。
2、观察3的倍数,你发现了什么?
教师参与到讨论学习中。
先独立思考,想出自己的想法。
然后与四人小组的同学说说你的发现。
生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生2:十位上的数也没有什么规律。
生3:将每个数的各个数字加起来试试看。
3、你发现的规律对三位数成立吗?找几个数来检验一下。
(1)自己先找几个数试一试。
(2)然后在小组内说说你验证的结论。
(三)活动三:试一试。
在下面数中圈出3的倍数。
284553873665。
(先自己圈,然后说说你是怎样判断的?)。
(四)活动四:练一练。
1、请将编号是3的倍数的气球涂上颜色。
361754714548。
(自己独立完成,在小组内说说自己的想法。)。
2、选出两个数字组成一个两位数,分别满足下面的条件。
3045。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
(独立完成,说说你的窍门和方法。)。
(五)活动五:实践活动。
在下表中找出9的倍数,并涂上颜色。
(可以在自主实践以后再交流。)。
三、总结。
通过这节课的学习,你有什么收获?
三的倍数教案设计篇六
1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。
2、培养学生观察、比较、抽象、慨括的能力。
3、培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。
质数、台数、济数、偶数的区别
给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小_的分类方法。明确:分类的际准很重要。
说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。
板书对应的集合图。
自然数
(能不能被2整除)
把学生列举的数填写在对应的集合圈里。
问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
今天我们就用找约数的方法来给自然数分类。
复习:什么叫约数?怎样找一个数所有的约数?
同桌合作。找出列举的各数的所有的约数。(同时板演)
引导学生观察:观察以上各数所含的数的个数,你能把它们分成几种情况‘!
根据学生的回答板书。
自然数
(约数的个数)
(只有两个约数)(有3个或3个以上的约数)
引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。
明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。
出示例1下面各数,哪些是质数?哪些是合数?
15 28 31 53 77 89 1ll
学生独立完成。
问:你是怎么判断的?
明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。
完成练一练。
1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。
22 29 35 49 51 79 83
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生操作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是这样的关系呢?
(略)。
三的倍数教案设计篇七
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
三的倍数教案设计篇八
生:蜜蜂。
师:蜜蜂在干嘛呀?
生:在采蜜。
(生自由发表意见,各抒己见)。
2.师:现在呢,有只小蜜蜂呢提出了这么一计策,把这些蜜蜂分成两个组,一组四分钟回来一次,一组六分钟回来一次,你们觉得这个问题完全解决了吗?同学们想一想。
(片刻之后)师:同学们把书翻到第六十页,在这个表中把4的倍数用标出来,用把6的倍数标出来。
两分钟之后展示一位同学所标出来的。
3.师:那4的倍数有哪些?
生:4、8、12、16、20、24、28、32、36、40、44、48。
师:那6的倍数又有哪些呢?
生:6、12、18、24、30、36、42、48。
又标了的有哪些?
生:12、24、36、48。
师:12、24、36、48既是4的倍数又是6的倍数,它们就叫做4和6的公倍数。
师:那么我们的两组蜜蜂在这些时候又会碰上一起回家。那它们最快是在什么时候相遇呢?
生:12分钟。
生:有,有无数个。
师:你能找出最大的一个吗?
生:不能。
师:4和6没有最大的公倍数,但有最小的公倍数,它就是我们这节课要学习的内容——最小公倍数。
三的倍数教案设计篇九
课程标准指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。罗老师执教的这节《公倍数与最小公倍数》就是很好地采用了适合这节课本身又有利于提高学生数学学习活动的方式,是在引导学生自主参与、发现、归纳的基础上认识并建立公倍数和最小公倍数概念的。整节课给人以清新、流畅之感,纵观这节课的教学,有以下几个吸引我的亮点:
1、故事导入,生动有趣,意义深远。
五年级学生的生活经验和知识背景更为丰富,课标要求教材选择具有现实性和趣味性的素材,由浅入深地促使学生在探索与交流中建立概念。本节课罗老师采用了一个渔夫打鱼的故事导入,此材料不仅紧贴课堂所要教学的主题,又使数学教学与生活实际紧密联系在一起,并且很能激发学生的学习积极性。通过解决故事中的问题,让学生经历概念的揭示过程,体验成功的喜悦。
2、讲练结合,层次分明,形式多样。
罗老师十分注重讲练结合及前后知识的整合。练习中有一般基础题,有求一定范围内的两数的公倍数,还有根据学生已有的知识经验判断2和3、2和5、3和5这些特征明显的两数的.公倍数和最小公倍数。学生在练习中获得对新知的巩固和强化,同时也巩固了已有的知识,加强了数学知识的联系性。练习时,罗老师不仅关注学生会不会做,更重要的是关注怎么做,当学生反馈时,注重让学生自己来讲讲思考过程,暴露自己的想法,培养学生的应用能力。
3、精彩课件,美丽清新,实用有效。
罗老师这节课还有一个亮点就是她采用的是flash课件,较一般的幻灯片课件要清新、漂亮。漂亮的课件不但吸引了学生的注意也将我们听课教师的目光牢牢锁住。并不是华而不实,罗老师的这套课件对完成这堂课的教学起到了很好的辅助作用,许多地方通过动态演示显得更清楚明了。
当然,这节课也存在一些需要进一步改进的地方,如:同类型教学出现次数过多,像是在教学并概括出4的倍数还有很多可用省略号表示后,6的倍数还在叫生一一列举,难免给人啰嗦之感;对学生回答问题的表述是否完整的关注还需加强,有生在回答2和3的公倍数有哪些这句话还能理解成什么问题时说道“能被2、3整除的数”,其实准确的描述应是能同时被2、3整除的数;另外,我觉得本课设计的联系量还不够大,可适当再增加一些。
三的倍数教案设计篇十
苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。
1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。
2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。
3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。
整理、应用因数和倍数的知识。
应用概念正确判断、推理。
一、揭示课题
谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?
揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。
二、回顾与整理
1.回顾讨论。
出示讨论题:
(1)你是怎样理解因数和倍数的?举例说明你的认识。
(2)2、5、3的倍数有什么特征?我们是怎样发现的?
(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。
(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?
让学生在小组里讨论,结合讨论适当记录自己的认识或例子。
2.交流整理。
围绕讨论题,引导学生展开交流,结合交流板书主要内容。
(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)
(指名学生说一说,再集体说一说)
你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)
能说说找一个数的因数或倍数的方法吗?
说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。
(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?
自然数可以怎样分类,各可以分成哪几类?
你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)
说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。
什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)
(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?
说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。
结合交流内容,逐步板书成:
l
质数质因数
合数分解质因数
因数公因数最大公因数
(互相依存)
倍数公倍数最小公倍数
2、5、3的倍数的特征
偶数
奇数
(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。
学生互相交流,教师巡视、倾听。
交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。
三、练习与应用
1.做“练习与应用”第1题。
指名学生交流,说说每组里因数和倍数关系。
提问:3和7有没有因数和倍数关系?为什么没有?
2.做“练习与应用”第2题。
(1)让学生独立写出前四个数的所有因数,指名两人板演。
交流:你是怎样找它们的因数的?(检查板演题)
(2)口答后三个数的因数。
引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)
提问:一个数的因数有什么特点?
说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。
3.分别说出下面各数的倍数。
581217
分别指名学生说出各数的倍数,教师板书。
提问:为什么要写省略号?一个数的倍数有什么特点?
说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4.做“练习与应用”第3题。
(1)让学生独立完成填数。
交流:题里各是怎样填的?(呈现结果)填数时怎样想的?
提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?
同时是2和5的倍数的数有什么特征?
哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。
(2)这里哪些数是偶数?奇数呢?
你是怎样判断偶数和奇数的?
5.做“练习与应用”第4题。
要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。
交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?
(板书:180810)
组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)
6.做“练习与应用”第5题。
让学生把质数圈出来,在合数下面画线。
交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?
说明:质数只有2个因数,合数至少有3个因数。
7.做“练习与应用’’第6题。
让学生选出质数和偶数。
交流、呈现结果。
提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。
所有的合数都是偶数吗?你能举例子说明吗?
指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。
8.下面的说法正确吗?
(1)大于0的自然数不是奇数就是偶数。
(2)大于0的自然数不是质数就是合数。
(3)奇数都是质数,偶数都是合数。
(4)自然数中最小的偶数是2,最小的合数是4。
(5)一个数本身既是它的因数,又是它的倍数。
9.做“练习与应用”第7题。
(1)让学生填空,指名板演。交流并确认结果。
提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?
说明:这里把合数写成这种质数相乘的形式,叫什么?
(2)把30、42分别分解质因数。
学生完成,交流板书,检查订正。
四、全课总结
提问:这节课主要复习的哪些内容?你有哪些收获?
三的倍数教案设计篇十一
1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。
2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。
3、渗透集合思想,培养学生的抽象概括能力。
三的倍数教案设计篇十二
教学目标:
使学生学会求三个数的最小公倍数的方法,并能正确地,合理地求三个数的最小公倍数。
教学过程:
一、复习
什么是公倍数、最小公倍数
怎样求两个数的最小公倍数
求两个数的最小公倍数与最大公约数有什么联系
当两个数是倍数关系时,大数就是这两个数的最小公倍数,小数就是这两个数的最大公约数。
当两个数是互质数时,这两个数的最大公约数是1,这两个数的最小公倍数是这两个数的乘积。
二、揭示课题
这节课我们学习求三个数的最小公倍数。
三、教学新课
1、例3求12、16和18的最小公倍数。
2、学生自学完成。
3、对不懂的问题提出疑问。
4、注意:用短除法求三个数的最小公倍数时,先要用三个数的`公约数去除,然后再用任意两个数的公约数去除。最后的结果要两两互质。
5、试一试
求15、30和60,3.4和7的最小公倍数。
计算后,你发现了什么?
(1)其中一个数是其他两个数的倍数,那么最大的数就是这三个数的最小公倍数。
(2)当三个数是互质数时,三个数的乘积是这三个数的最小公倍数。
四、巩固练习
五、反馈
六、布置作业
反思:本节课的难点是让学生知道为什么在求出三个数的公约数后还要求出两个数的公约数。然后把所有的除数和商乘起来。
三的倍数教案设计篇十三
:p70~72的例题及相应的试一试、想想做做中的1—3题。
1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。
2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。
3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
:理解因数和倍数的含义,知道它们的关系是相互依存的。
探索并掌握找一个数的因数的方法。
:12个小正方形片、每个学生的学号纸。
1、操作活动。
(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。
(2)整理、交流,分别板书4×3=1212×1=126×2=12。
2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。
(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?
指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?
小结:倍数和因数是指两个数之间的关系,他们是相互依存的。
指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。
二、探索找一个数倍数的方法。
1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。
3、议一议:你发现找3的倍数有什么小窍门?
明确:可以按从小到大的顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。
4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?
生独立完成,集体交流。注意用……表示结果。
5、观察上面的3个例子,你发现一个数的倍数有什么特点?
根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。
6、做“想想做做”第2题。
1、学会了找一个数倍数的方法,再来研究求一个数的因数。
你能找出36的所有因数吗?
2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。
3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?
4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)。
板书:(有序、全面)。正因为思考的有序,才会有答案的全面。
5、试一试:请你用有序的思考找一找15和16的因数。
指名写在黑板上。
一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。
7、“想想做做”第3题。
生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。
四、课堂总结:学到这儿,你有哪些收获?
五、游戏:“看谁反应快”。
规则:学号符合下面要求的请站起来,并举起学号纸。
(1、)学号是5的倍数的。
(2、)谁的学号是24的因数。
(4、)谁的学号是1的倍数。
2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。
在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。
3、p71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的`顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。
4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。
5、教材p72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。
为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。
三的倍数教案设计篇十四
3、写出下列各组的最大公因数。
3和74和69和1812和30。
引出新课。
二、师生共研。
以4和6这组数为例,就在50以内数表中找一找。你发现了什么?
(1)4的倍数:4、8、12、13、20、24、28、32、36、40、44、48。
(2)6的倍数:6、12、18、24、30、36、42、48。
(3)两个都有的:12、24、36、48。
(1)让学生以小组的形式探讨,看看如何用短除法来求两个数的最小公倍数。再交流。
(2)反馈时围饶着以下几个方面交流:
短除式中除数是2的什么数?
为什么在得出商2和3时不再往下除?
(3)师生共同探究与交流。
让学生用自己喜欢的方式找一找,再用另一种验证。
重点反馈短除法。
3、探究特殊关系的两数怎样确定它们的最小公倍数。
先让学生独立完成。
思考后交流自己的发现。
三、全课总结。
1、这节课我们交的新朋友是什么?你现在对它知道多少?
(1)先定关系。
(2)确定用什么方法找。
3、有什么问题或发现?
四、布置作业:
2、3、4、5。
三的倍数教案设计篇十五
使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。
教学重点、难点
重点、难点:求两个数的公倍数和最小公倍数
备 注
一、问题情境引入
(问题情境的材料可视学生实际情况作调整)
二、新课展开
1、建立公倍数、最小公倍数的概念。
(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。
学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:
生甲:我们画了一条表示天数的数轴然后分别找出甲组、乙组第一次同时去后过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。
可由学生边讲边画出示图,也可由教师根据学生回答板书。(图略)
教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?
生甲:还会相遇,不过画图找太麻烦了。
生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。
教师板书学生思路:
甲组经过:6天、12天、18天、28天、30天、36天......
乙组经过:9天、18天、27天、36天、45天......
所以经过18天、36天......他们再次相遇。......
生:甲组、乙组经过的天数分别是6的倍数和9的`倍数。(教书调整板书)
6的倍数:6、12、18、24、30、36......
9的倍数:9、18、27、36、45......
教学过程
备 注
生讨论得出:18、36既是6的倍数,又是9的倍数,是6和9的公约数,即是6和9的公约数,18和9的公倍数中最小的,可以称为最小公倍数。
(3)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)
师:那么什么叫公倍数、最小公倍数?
学生讨论后得出;几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
师:有没有最大公约数,为什么?
生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公约数还有54、72、90......无穷无尽。
2、用列举法求两个数的公约数、最小公约数。
做课本第57页练一练第1题,学生试算后,反馈。
生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。
教师随学生记叙板书;
6的倍数有:6、12、18、24......
4的倍数有:4、8、12、16、20、24......
6和4的公约数有:12、24......
6和4的最小公约数是12。
(2)师生共同方法。
(3)练习:完成课本练一练第2、3、4、5题。
三、课堂
通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等关概念外,还应注意学习方法,情感等方面的。)
四、作业《作业本》
从倍数着手,层层深入,得出公倍数与最小公倍数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合。
课后反思:
激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的,包罗万象,既有对学习方法的,又有对学习情感的,也有对自己的鞭策鼓励。这样的,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。
三的倍数教案设计篇十六
教学内容:
苏教版义务教育教科书《数学五年级下册第47~48页整理与练习“回顾与整理”和“练习与应用”第1~7题。
教学目标:
1.使学生加深认识因数和倍数,能找一个数的因数或倍数,进一步认识质数和合数;掌握2、5、3的倍数的特征,进一步认识偶数和奇数;加深理解质因数,能正确分解质因数。
2.使学生能整理因数和倍数的知识内容,感受知识之间的内在联系;能应用相关概念进行分析、判断、推理,进一步掌握思考、解决数学问题的方法,积累数学思维的初步经验,提高分析、推理、判断等思维能力;加深对数的认识,进一步发展数感。
3.使学生主动参与回顾、整理知识和分析、解决问题等活动,培养乐于思考的品质和与同伴互相交流、倾听等合作意识和能力;感受数学方面的知识积累和进步,提高学好数学的自信心。
教学重点:
教学难点:
应用概念正确判断、推理。
教学过程:
一、揭示课题。
谈话:最近的数学课,我们学习了哪方面的内容?回忆一下,都学到了哪些知识?
揭题:我们已经学完了因数和倍数这一单元的内容,今天开始主要整理与练习这一单元内容。(板书课题)通过整理与练习,我们要进一多认识因数与倍数,2.5.3的倍数的特征,能熟练掌握找一个数的因数或倍数的方法;能判断偶数和奇数、质数和合数,了解这些概念之间的联系与区别,能正确分解质因数,提高对数的特征的认识,加深对数的认识。
二、回顾与整理。
1.回顾讨论。
出示讨论题:
(1)你是怎样理解因数和倍数的?举例说明你的认识。
(2)2、5、3的倍数有什么特征?我们是怎样发现的?
(3)自然数可以怎样分类,各能分成哪几类?举例说说什么是质因数和分解质因数。
(4)什么是两个数的公因数和最大公因数,公倍数和最小公倍数?
让学生在小组里讨论,结合讨论适当记录自己的认识或例子。
2.交流整理。
围绕讨论题,引导学生展开交流,结合交流板书主要内容。
(1)提问:能说说什么是因数和倍数吗?可以用例子说明。(结合交流板书一两个乘法或除法算式)。
(指名学生说一说,再集体说一说)。
你能找出6的因数吗?(板书因数)6的倍数呢?(板书倍数)。
能说说找一个数的因数或倍数的方法吗?
说明:一个数的因数可以从小到大一对一对地找,到中间两个因数之间没有因数为止;一个数的倍数可以用依次乘1、2、3……这样的方法找,注意一个数的倍数是无限的,写一个数的倍数要注意用省略号。
(2)提问:2、5、3的倍数各有什么特征?我们是怎样发现的?
自然数可以怎样分类,各可以分成哪几类?
你能举出偶数和奇数、质数和合数的一些例子吗?(学生举出各类数的例子)。
说明:按是不是2的倍数可以把自然数分成偶数和奇数两类,是2的倍数的是偶数,不是2的倍数的是奇数;按因数的个数可以把自然数分成1和质数、合数三类,只有两个因数的是质数,有两个以上因数的是合数,1既不是质数也不是合数。
什么是质因数和分解质因数?6有哪些质因数?怎样把6分解质因数?(板书式子,并说明其中的质因数)。
(3)提问:什么是公因数和最大公因数,什么是公倍数和最小公倍数?
说明:两个数公有的因数叫公因数,其中最大的叫最大公因数;两个数公有的倍数叫公倍数,其中最小的叫最小公倍数。
结合交流内容,逐步板书成:
l
质数质因数。
合数分解质因数。
(互相依存)。
2、5、3的倍数的特征。
偶数。
奇数。
(4)引导:请同学们现在观察我们整理的这一单元学过的内容,了解知识之间的联系,同桌互相说说知识是怎样发展的。
学生互相交流,教师巡视、倾听。
交流:哪位同学能看黑板上整理的内容,说说我们怎样逐步认识这些知识的,知识是怎样发展起来的。
三、练习与应用。
1.做“练习与应用”第1题。
指名学生交流,说说每组里因数和倍数关系。
提问:3和7有没有因数和倍数关系?为什么没有?
2.做“练习与应用”第2题。
(1)让学生独立写出前四个数的所有因数,指名两人板演。
交流:你是怎样找它们的因数的?(检查板演题)。
(2)口答后三个数的因数。
引导:能说出后面每个数的全部因数吗?(学生口答,教师板书)。
提问:一个数的因数有什么特点?
说明:一个数因数的个数是有限的,最小的是1.最大的是它本身。
3.分别说出下面各数的倍数。
581217。
分别指名学生说出各数的倍数,教师板书。
提问:为什么要写省略号?一个数的倍数有什么特点?
说明:一个数倍数的个数是无限的,最小的是它本身,没有最大的倍数。
4.做“练习与应用”第3题。
(1)让学生独立完成填数。
交流:题里各是怎样填的?(呈现结果)填数时怎样想的?
提问:哪些数既是3的倍数,又是5的倍数?你是怎样想的?
哪些数既是2的倍数,又是5和3的倍数?说说你的判断方法。
(2)这里哪些数是偶数?奇数呢?
你是怎样判断偶数和奇数的?
5.做“练习与应用”第4题。
要求学生独立思考,自己选出两张卡片,按各题的要求分别组成两位数,把能组成的数记录下来。
交流:同时是5和3的倍数的数有哪些?(板书:30)如果是三位数呢?
(板书:180810)。
组成的两位数中最大的偶数是多少?(板书:80)最小的奇数呢?(板书:13)。
6.做“练习与应用”第5题。
让学生把质数圈出来,在合数下面画线。
交流:哪些是质数,哪些是合数?(板书成两类)质数和合数是按什么分的?
说明:质数只有2个因数,合数至少有3个因数。
7.做“练习与应用’’第6题。
交流、呈现结果。
提问:观察表里选出的质数和偶数,所有的质数都是奇数吗?请举出一个具体例子。
所有的合数都是偶数吗?你能举例子说明吗?
指出:如果要说明一个结论是错误的,只要举一个反例。比如,要判断质数都是奇数的说法是错的,只要举出质数2是偶数这个例子。这里质数2是偶数就是一个反例。要判断合数都是偶数是错的,也只要举一个反例,比如合数9就是奇数。
8.下面的说法正确吗?
(1)大于0的自然数不是奇数就是偶数。
(2)大于0的自然数不是质数就是合数。
(3)奇数都是质数,偶数都是合数。
(4)自然数中最小的偶数是2,最小的合数是4。
(5)一个数本身既是它的因数,又是它的倍数。
9.做“练习与应用”第7题。
(1)让学生填空,指名板演。交流并确认结果。
提问:这里填写的质数都叫积的什么数?为什么称它是积的质因数?
说明:这里把合数写成这种质数相乘的形式,叫什么?
(2)把30、42分别分解质因数。
学生完成,交流板书,检查订正。
四、全课总结。
提问:这节课主要复习的哪些内容?你有哪些收获?
三的倍数教案设计篇十七
(非零自然数中)。
1×36=3636÷1=3636÷36=1。
2×18=3636÷2=1836÷18=2。
3×12=3636÷3=1236÷12=3。
4×9=3636÷4=936÷9=4。
6×6=3636÷6=6。
36的因数有:1、2、3、4、6、9、12、18、36.
三的倍数教案设计篇十八
回来一次,你知道它们最快什么时候相遇吗?(完成书上60页的试一试)。
师:50以内6的倍数有哪些?
生:6、12、18、24、30、36、42、48。
师:50以内9的倍数又有哪些?
生:9、18、27、36、45。
师:50以内6和9的公倍数有哪些?
生:18和36。
生:18。
师:我们的两组蜜蜂最快在18分钟的时候相遇了。
生:列举法。
师:那现在还有一种方法找最小公倍数,短除法。
21824。
912。
34。
3和610和89和4。
4.联系实际,解决问题。
师:看看,这是什么?
生:跑道。
师:同学们平时爱跑步吗?,在学校的跑道上跑一圈大概需要多长时间?现在看看他们三个人的。
(1)我跑一圈用6分钟。
(2)我跑一圈用4分钟。
(3)我跑一圈用8分钟。
师:你能提出问题吗?
生1:他们同时出发男孩和女孩最快什么时候相遇?
生2:他们同时出发男孩和老师最快什么时候相遇?
生3:他们同时出发老师和女孩最快什么时候相遇?
(独立完成)。
三的倍数教案设计篇十九
该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的'学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。
五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。
1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。
2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。
3、渗透集合思想,培养学生的抽象概括能力
公倍数与最小公倍数的概念建立。
运用公倍数与最小公倍数解决生活实际问题
为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。
师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。
师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)
师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。