教案的编写应当充分考虑到不同学生的差异和个体差异。编写教案要注重教学效果的评价,关注学生学习的成果和反馈。推荐阅读以下教案示例,希望能为您的教学工作提供一些启示。
湘教版七年级数学上册教案篇一
1、大于0的数叫做正数(positivenumber)。
2、在正数前面加上负号“-”的数叫做负数(negativenumber)。
3、整数和分数统称为有理数(rationalnumber)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则。
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则。
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则。
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则。
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an中,a叫做底数(basenumber),n叫做指数(exponeht)。
22、根据有理数的乘法法则可以得出。
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;。
(2)同级运算,从左到右进行;。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximatenumber)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significantdigit)。
短时间提高数学成绩的方法。
1、查查在知识方面还能做那些努力。关键的是做好知识的准备,考前要检查自己在初中学习的数学知识是否还有漏洞,是否有遗忘或易混的地方;其次是对解题常犯错误的准备,再看一下自己的错误笔记,如果你没有错题本,那可以把以前的做过的卷子找出来。翻看修改的部分,那就是出错的地方、争取在答卷时,不犯或少犯过去曾犯过的错误。也就是错误不二犯。
2、一定要对自己、对未来充满信心,心态问题是影响考试的最重要的原因。走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道初中数学题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。
3、看完书后,把课本放起来,做习题,通过做习题来再一次检查自己哪些地方做的不够好,如果碰到不会的地方,可以再看课本,这样以来,相信会给你留下深刻的印象。
数学学习方法。
1、基础很重要。
是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。,数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。
李现良表示,班里某位同学来找自己讲题,其实题目并不难,但这位同学就是因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。
2、错题本很重要。
在所有科目中,数学这个科目最重要错题本学习法。李现良同学也特别提倡大家整理错题,李现良对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。
3、做题要多反思。
数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。
4、把数学知识形成体系。
数学学霸李现良表示,课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。
湘教版七年级数学上册教案篇二
几何图形大小:长度、面积、体积等。
位置:相交、垂直、平行等。
2几何体也简称体。包围着体的是面。
3常见的立体图形:柱体、椎体、球体等各部分不都在一个平面内。
4平面图形:在一个平面内的图形就是平面图形。
5展开图:识记一些常用的展开图。圆柱/圆锥的侧面展开图;。
6点线面体:是组成几何图形的基本元素。
7直线、射线、线段。
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
经过两点有一条直线,并且只有一条直线。两点确定一条直线。
8角。
9角的比较与运算。
角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
余角:如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。
补角:如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
性质:等角(同角)的补角相等。等角(同角)的余角相等。
湘教版七年级数学上册教案篇三
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点。
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)2.在组长的组织下进行讨论、交流。(约5分钟)3、小组分任务展示。(约25分钟)4、达标检测。(约5分钟)5、总结(约5分钟)。
四、小组对学案进行分任务展示。
(一)、温故知新:。
(二)小组合作交流,探究新知。
1、观察下图,回答问题:(五组完成)。
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.
4的绝对值记作,它表示在上与的距离,所以|4|=。
2、做一做:
(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2(2)、求下列各组数的绝对值:(一组完成)。
(1)4,-4;(2)0.8,-0.8;。
从上面的结果你发现了什么?
3、议一议:(八组完成)。
(1)|+2|=,
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)。
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)。
5:做一做:(三组完成)。
1、(1)在数轴上表示下列各数,并比较它们的大小:
-3,-1。
(2)求出(1)中各数的绝对值,并比较它们的大小。
(3)你发现了什么?
2、比较下列每组数的大小。
(1)-1和–5;(五组完成)(2)?
(3)-8和-3(七组完成)。
5和-2.7(六组完成)6五、达标检测:
1:填空:
绝对值是10的数有()。
|+15|=()|–4|=()。
|0|=()|4|=()2:判断(1)、绝对值最小的数是0。()(2)、一个数的绝对值一定是正数。()(3)、一个数的绝对值不可能是负数。()。
(4)、互为相反数的两个数,它们的绝对值一定相等。()(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()。
六、总结:
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.
2.绝对值的性质:正数的绝对值是它本身;。
负数的绝对值是它的相反数;0的绝对值是0.
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.
七、布置作业。
p50页,知识技能第1,2题.
湘教版七年级数学上册教案篇四
为了让学生通过实例了解数轴的概念和数轴的画法,知道如何在数轴上表示有理数。为大家分享了七年级数学数轴的课件教学,欢迎借鉴!
教学目标。
1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点。
数轴的概念和用数轴上的点表示有理数。
知识重点。
教学过程(师生活动)设计理念。
设置情境引入课题。
教师通过实例、课件演示得到温度计读数.。
(多媒体出示3幅图,三个温度分别为零上、零度和零下)。
(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学点表示数的感性认识。
合作交流。
探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
寻找规律。
归纳结论问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)。
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习。
教科书第12页练习。
小结与作业。
课堂小结请学生。
总结。
1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业。
1,必做题:教科书第18页习题1.2第2题。
2,选做题:教师自行安排。
教学反思:
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
湘教版七年级数学上册教案篇五
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法。
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
湘教版七年级数学上册教案篇六
一、选择题:(本题共24分,每小题3分)。
在下列各题的四个备选答案中,只有一个答案是正确的,请你把正确答案前的字母填写在相应的括号中.
1.若一个数的倒数是7,则这个数是().
a.-7b.7c.d.
2.如果两个等角互余,那么其中一个角的度数为().
a.30°b.45°c.60°d.不确定。
3.如果去年某厂生产的一种产品的产量为100a件,今年比去年增产了20%,那么今年的产量为()件.
a.20ab.80ac.100ad.120a。
4.下列各式中结果为负数的是().
a.b.c.d.
5.如图,已知点c是线段ab的中点,点d是cb的中点,那么下列结论中错误的是().
a.ac=cbb.bc=2cdc.ad=2cdd.
6.下列变形中,根据等式的性质变形正确的是().
a.由,得x=2。
b.由,得x=4。
c.由,得x=3。
d.由,得。
7.如图,这是一个马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路ac、ab、ad中最短的是().
a.acb.abc.add.不确定。
8.如图,有一块表面刷了红漆的立方体,长为4厘米,宽为5厘米,高为3厘米,现在把它切分为边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.
a.48b.36c.24d.12。
二、填空题:(本题共12分,每空3分)。
9.人的大脑约有100000000000个神经元,用科学记数法表示为.
10.在钟表的表盘上四点整时,时针与分针之间的夹角约为度.
11.一个角的补角与这个角的余角的差等于度.
12.瑞士的教师巴尔末从测量光谱的数据,,,…中得到了巴尔末公式,请你按这种规律写出第七个数据,这个数据为.
三、解答题:(本题共30分,每小题5分)。
13.用计算器计算:(结果保留3个有效数字)。
14.化简:
15.解方程。
16.如示意图,工厂a与工厂b想在公路m旁修建一座共用的仓库o,并且要求o到a与o到b的距离之和最短,请你在m上确定仓库应修建的o点位置,同时说明你选择该点的理由.
拓展知识。
湘教版七年级数学上册教案篇七
教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。下面小编为大家分享初中数学教案设计,欢迎大家参考借鉴。
教学目标。
1.理解二元一次方程及二元一次方程的解的概念;。
2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;。
3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;。
4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。
教学重点、难点。
重点:二元一次方程的意义及二元一次方程的解的概念.
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.
教学过程。
1.情景导入:
新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.
2.新课教学:
引导学生观察方程80a+150b=902880与一元一次方程有异同?
得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.
3.合作学习:
4.课堂练习:
1)已知:5xm-2yn=4是二元一次方程,则m+n=;。
2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_。
5.课堂总结:
(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);。
(2)二元一次方程解的不定性和相关性;。
(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.
作业布置。
本章的课后的方程式巩固提高练习。
湘教版七年级数学上册教案篇八
一个人只有在早晨开始就努力学习,这一天才不会被浪费掉。我们每一个人都是应该抓住每一分,每一秒,不让他们偷跑掉。同学们,请记住“成功,属于珍惜时间的人”,珍惜自己的时间,对你自己是有益的。学会高效的。
学习。
方法。
可以提高自身的学习能力。下面就是小编为大家梳理归纳的内容希望能够帮助到大家。
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类。
知识重点正确理解有理数的概念。
教学过程(师生活动)设计理念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生。
总结。
已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
小结与作业。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
本课。
教育。
评注(课堂设计理念,实际教学效果及改进设想)。
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概。
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进。
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分。
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;。
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数。
知识重点。
教学过程(师生活动)设计理念。
设置情境。
引入课题教师通过实例、课件演示得到温度计读数.
(多媒体出示3幅图,三个温度分别为零上、零度和零下)。
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
点表示数的感性认识。
合作交流。
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
寻找规律。
归纳结论问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)。
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习。
教科书第12页练习。
小结与作业。
课堂小结请学生总结:
1,数轴的三个要素;。
2,数轴的作以及数与点的转化方法。
本课作业1,必做题:教科书第18页习题1.2第2题。
2,选做题:教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,
教学方法。
体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识。
经验。
出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;。
2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;。
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征。
知识重点相反数的概念。
教学过程(师生活动)设计理念。
设置情境。
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。
4,-2,-5,+2。
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)。
思考结论:教科书第13页的思考。
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想。
深化主题提炼定义给出相反数的定义。
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a。
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义。
给出规律。
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5。
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。
小结与作业。
课堂小结1,相反数的定义。
2,互为相反数的数在数轴上表示的点的特征。
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题。
2,选做题教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和。
发散思维。
的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
湘教版七年级数学上册教案篇九
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征。
知识重点相反数的概念。
教学过程(师生活动)设计理念。
设置情境。
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类。
4,-2,-5,+2。
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)。
思考结论:教科书第13页的思考。
再换2个类似的数试一试。
培养学生的观察与归纳能力,渗透数形思想。
深化主题提炼定义给出相反数的定义。
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a。
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义。
给出规律。
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5。
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法。
小结与作业。
课堂小结1,相反数的定义。
2,互为相反数的数在数轴上表示的点的特征。
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题。
2,选做题教师自行安排。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.