当前位置:网站首页 >> 文档 >> 最新圆的面积一教学反思(3篇)

最新圆的面积一教学反思(3篇)

格式:DOC 上传日期:2023-01-20 14:20:14
最新圆的面积一教学反思(3篇)
    小编:zdfb

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

圆的面积一教学反思篇一

学习此知识之前,学生已初步认识了圆,理解了面积的含义,并且掌握了长方形、正方形、平行四边形、三角形、梯形的面积计算公式的推导过程,因此学习圆的面积公式推导过程时只需要教师启发、点拨学生依然从转化的思想入手,将圆转化为已学过的图形进行计算,然后通过等量代换得到圆面积公式。因此,新课内容必须从贴近学生生活的情境出发,激发学生的探究欲望,降低内容的抽象性,引导学生用转化的方法推导出圆面积的计算公式。

本节课,我认为我主要有以下几个亮点:

在教学“圆的面积”计算公式推导时,我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,有效地体验从猜想——实践验证——分析——归纳总结的科学探究问题的方法。看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。例如:想一想以前咱们学过了哪些图形的面积计算公式?(长方形、正方形、平行四边形、三角形、梯形)这些面积公式都是怎样推导出来的?(生边回答课件边演示平行四边形、三角形、梯形的面积公式推导过程)从这些面积公式推导过程中你得到了什么启发?(都先转化成长方形,可否将圆也转化成长方形呢?)怎么转化?(生讨论,看书等后回答:把圆分成若干等份,拼成长方形),你想分成多少等份?(16等份)多点行不行?(众说不一,同桌讨论后回答:行)为什么呢?(分的等份越多,拼成的图形就越接近长方形)如果越少呢?(拼成的图形就越不象长方形)如果分成两等份呢?(用两个半圆试拼)(那就拼不成长方形了)现在我们将这个圆分成16等份,请两个同学上台拼一拼,大家首先看圆周围的黑线表示圆的什么?(周长)这条红线呢?(半径)这两条线很顽皮,在拼的过程中要跟我们玩捉迷藏,一定要盯住它们各藏到哪儿了?(学生操作)他们先把两个半圆展开,然后犬牙交错地拼在一起,成了什么图形啦?(长方形)是精确的长方形吗?(不是,是近似的)为什么?(上下两条长边上有许多小包包)对,两条长边不是直的,是波浪形的,怎样才能使它接近一条直线呢?(把圆分的等份越多,就越接近直线)好,现在我们就将圆分成32等份拼一下,为了便于观察,我们用课件来演示。同样用黑线表示周长,红线表示半径。也学这两位同学这样拼起来,成了一个什么图形?(几乎是一个长方形了)这样一拼之后,什么变了?什么没变?(形状变了,面积没变)现在大家找一找,黑线和红线各藏到哪里去了?(黑线分成了两段,到了长方形的上下两边,红线到了长方形的右边)各成了长方形的什么呀?(表示圆周长的一半成了长方形的长,表示半径的红线成了长方形的宽)(老师对应地板书)长方形的面积等于长乘以宽,那么圆的面积等于什么呀?(学生互相合作,推导出圆面积公式)(老师对应板书并熟读公式)好,现在大家用学具拼一拼,看还能拼出什么学过的图形?(可以拼出近似三角形、平行四边形、梯形)真不错,拼成的这些图形同样可以推导出圆面积的计算公式,这个问题我们留到数学活动课再去进一步探讨。

在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣,为学生今后圆锥,圆柱奠定了有力的基础。

课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。但回头想想,也可以把圆的面积分两课时来上,一课时是让学生操作,圆可以转化成什么图形?第二课时才深入地研究如何推导圆面积的公式,这样费时多些但对学生的能力开拓会更有好处。

圆的面积一教学反思篇二

圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

本课开始,我先让学生比较圆的周长与圆的面积有什么不一样,之后结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下方探究圆的面积计算的方法奠定基础。

透过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。此刻回想起来,我不就应一上来就问如何计算圆的面积,而就应先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自我手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自我制作的学具操作起来很不方便,既耽误时光,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决问题的潜力得到了提高。但值得反思的是,我总是抱着一节课就应解决一个知识点的想法,所以为了赶时光,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时光,这是我今后课堂教学就应个性注意的地方。

结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不一样的层应对学生的学习状况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用。在每一道练习题的设置上,都有不一样的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

在这一节课中,我总觉得操作学具时光短,我有点操之过急,只是让学生草草地操作,更多的是透过自我的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,就应给学生足够的思考空间和探索时光,使学生的思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决同题的潜力得到充分提高。另外,在细节的设计还要精心安排。

圆的面积一教学反思篇三

圆的面积的推导是建立上转换思想上推导出来的,在课前预习上我让学生自己准备一个圆平均分成偶数等分8、12、16、24均可,并未说明均等分以后的作用,让学生带着疑问进入到今天的学习。

学习之初,我课件出示的是工人铺人工草坪,问草坪的面积是多少平方米?这个问题,一方面让学生了解圆的面积的意义,另一方面也使他们体会数学与生活的紧密联系和学习数学的必要性,由于学生没有学过曲线围城图形的面积求解,所以课堂的开始关于草坪面积的求解,学生毫无头绪,这时再讲让学生回忆三角形,平行四边形的推导过程,学生能顺利回忆出释割补,拼接转化成他们熟悉的图形长方形。这时再顺利过渡到圆的面积的推导我们是不是也可以用这样的办法呢,就水到渠成了。

在让学生拿出自己准备好均分的圆,自己试着拼一拼中,发现大部分同学都只是均分成了八份,离长方形的还有一定的距离,这时我课件出示。16,32等分以后拼成的图形使学生发现分的份数越多,拼成的图形的边就越直,越接近于长方形,在这种理解和掌握圆的面积公式的推导过程中,不仅培养了学生的动手能力,还培养了学生的极限思想。

在这节课的学习中发现以下几点不足之处:

在让学生课前准备圆,第二天检查时仍然发现好多同学没有准备,在准备的同学中,均分到8份以上的同学又少之又少,所以在以后的教学中会事先分好组,避免出现此类事情。

由圆拼成长方形以后,观察长方形的长与宽与圆的半径和周长由什么关系时,很多同学并不能找到他们之间的关系,由此发现学生的观察能力还需要进一步的引导和培养。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:2.99元 10元
微信扫码支付
b.包月复制
付费后30天内不限量复制
特价:6.66元 10元
微信扫码支付
联系客服