范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
六年级奥数题分类篇一
大纸箱里有74只桔子,中等大小的纸箱里有200块饼干,小纸箱里有120颗糖。平均分发完毕,每种小食品都剩下些零头,纸箱里还有2只桔子、12棵糖和20块饼干。大班里共有多少位小朋友?
答案与解析:带来74只桔子,还剩2只,发下去的是72只。可见大班小朋友的人数是72的约数。
带来200块饼干,还剩20块,发下去的是180块。可见大班小朋友的人数也是180的约数。
带来120颗糖,还剩12颗,发下去的`是108颗。可见大班小朋友的人数又是108的约数。
所以,大班小朋友的人数是72、180和108的公约数。
3个数72、180和108的最大公约数是36,其余公约数都不超过18。由于发到后来剩下的零头里有20块饼干,可见小朋友的人数大于20。所以大班的小朋友共有36人。
幸亏饼干剩得多,如果剩下的饼干只有17块,就不能确定人数是36个还是18个了。
六年级奥数题分类篇二
六年级奥数模拟试题
一 、填空题。
1、恰好有两位数字相同的三位数共有个。
2、有许多边长是3 cm,2 cm,1 cm的正方形纸板。用这些正方形纸板拼成一个长5 cm,宽3 cm的长方形,一共有()种不同的拼法。(通过翻转能相互得到的拼法算一种拼法)
3、某厂计划全年完成1600万元产值,上半年完成了全年计划的 ,下半年比上半年多完成 ,这样全年产值可超过计划()吨。
4、一件工程甲单独做要6小时完成,乙单独做要10小时完成,如果按照甲、乙、甲、乙……顺序交替工作,每次工作1小时,那么要()分钟才能完成。
5、一个数的20倍减去1能被153整除,这样的自然数中最小的`是()。
6、有一个长方体,长、宽、高都是整厘米数。它的相邻三个面的面积分别是96平方厘米,40平方厘米和60平方厘米。这个长方体的体积是()立方厘米。
7、某校的学生人数是个完全平方数,的学生人数比上一年多101人,这个数字也是一个完全平方数。该校20的学生人数是()。
8、一个铁路工人在路基下原地不动,一列火车从他身边驶过用了40秒,如果这个工人以每小时6千米的速度迎着火车开来的方向行走,则这列火车从他身边驶过只用37.5秒,则这列火车每小时行()千米。
9、假设某星球的一天只有6小时,每小时36分钟,那么3点18分时,时针和分针所形成的锐角是()度。
二、解答题。
1、正义路小学共有1000名学生,为支援“希望工程”,同学们纷纷捐书,有一半男生每人捐了9本书,另一半男生每人捐了5本书;一半女生每人捐了8本书,另一半女生每人捐了6本书。全校学生共捐了多少本书?
2、在a医院,甲种药有20人接受试验,结果6人有效;乙种药有10人接受试验,结果只有2人有效。在b医院,甲种药有80人接受试验,结果40人有效;乙种药有990人接受试验,结果有478人有效。综合a、b两家医院的试验结果,哪种药总的疗效更好?
3、甲乙合作完成一项工作,由于配合得好,甲的工作效率比单独做时提高 ,乙的工作效率比单独做时提高 ,甲乙合作6小时完成了这项工作。如果甲单独做需要11小时,那么乙单独做需要几小时?
4、一辆大货车与一辆小轿车同时从甲地开往乙地,小轿车到达乙地后立即返回,返回时速度提高 。出发2小时后,小轿车与大货车第一次相遇,当大货车到达乙地时,小轿车刚好走到甲乙两地中点。小轿车在甲乙两地往返一次需要多少时间?
六年级奥数题分类篇三
小学六年级奥数试题
1.(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?
2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米?
3.(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?
4.(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米?
5.(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?
6.(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?
7.(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?
8.(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?
9.(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?
10.(周期问题)7月1日是星期六,求10月1日是星期几?
11.(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。0.8元一本的练习本有多少本?
12.(年龄问题)5年前父亲的年龄是儿子的7倍。后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?
13.(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。求有多少个学生?有多少个笔记本?
14.(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。求水果店里原来一共有多少个芒果?
15.(置换问题)学校买回6张桌子和6把椅子共用去192元。已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?
16.(最佳安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?
17.(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?
⒙(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?
19. (鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?
20. (相遇问题)甲、乙两人同时从相距米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。这样不断来回,直到甲和乙相遇为止,狗共行了多少米?
六年级奥数题分类篇四
1.(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。0.8元一本的练习本有多少本?
2.(年龄问题)5年前父亲的年龄是儿子的7倍。后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?
3.(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。求有多少个学生?有多少个笔记本?
4.(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。求水果店里原来一共有多少个芒果?
5.(置换问题)学校买回6张桌子和6把椅子共用去192元。已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?
6.(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?
7.(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?
8.(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?
9.(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?
10.(相遇问题)甲、乙两人同时从相距米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。这样不断来回,直到甲和乙相遇为止,狗共行了多少米?
六年级奥数题分类篇五
六年级奥数竞赛试题
一、填空(第8题4分,其他每小题均为2分共20分)
1、75公顷=平方千米 100分钟=( )天
2、把一根3米长的钢材,从一头到另一头截成每段长 米的小段要截( )次,每段占全( )
3、1天的 和( )小时的 一样长。
4、六年(1)班女生占男生的 ,则男生占全班的( )。
5、甲比乙多 ,乙比丙少25%,则甲是丙的`( )%。
6、一个半圆的直径是10厘米,它的周长是( )
7、把360本书按4∶5∶6分给四、五、六、年级,分得最多的年级比分得最少的年级多( )本。
8、在一张长12厘米,宽8厘米的长方形纸上,剪下两个最大的圆,那么每个圆的周长是( ),剩下部分占这张纸面积的( )。
9、两个质数倒数相加,和的分子是25,分母是( )。
二、判断题:(10分)
1、1米的25%是25%米。 ( )
2、一个数的倒数,有可能与这个数相等。 ( )
3、如果ab=1,则a是倒数。 ( )
4、直径是4分米的圆,它的周长和面积相等。 ( )
5、生产101个零件,101个合格,合格100%。 ( )
三、选择题。(10分)
1、如果a、b、c都为自然数,并都不为零,若a÷ >a,则b( )c。
a> b= c< d不能比较
2、一个数和它的倒数之和一定( )1。
a> b= c< d无法比较
3、两件衣服都按80元出售,其中一件赚了25%,另一件亏了25%,那么两件衣服合算在一起,结果是( )。
a赚了 b亏了 c不赚不亏 d无法比较
4、一个三角形的三个内角度数比是4∶1∶1,这个三角形是( )三角形。
a直角 b等边 c等腰 d直角等腰
5、甲乙两数的和是2 ,甲减去乙的差为1,则乙数是( )。
a1 b2 c8 d0
四、计算:
1、直接写出的得数:(8分)
45÷4 = ( 256+14 )×12=
152 ÷ 12=
2、能简算的要简算。(18分)
12.5%× 0.25÷ 1÷(0.075+.089 )=
五、解决问题:(4+4+4+5+5=22分)
1、一堆煤,用去总数的40%后,又运进24吨,现在的吨数是原来总数的 ,这堆煤原有多少吨?
2、有一项工程,甲、乙二人共同做需要6天完成。现在两人做了2天后,剩下的由乙单独做,结果又做了10天才完成。乙单独做这项工程需要多少天完成?
3、一条绳子用去全长的 多4米,剩下的部分比用去的部分多2米。这条绳子全长多少米?
4、从一张面积是16平方分米的正方形铁皮中,剪下一个面积为最大的圆,剩下铁皮的面积是多少平方分米?
5、甲、乙两列火车从相距480千米的两地同时相对开出,甲车每小时行80千米, 小时后两车相距全程的70%。乙车每小时行驶多少千米?
六年级奥数题分类篇六
六年级奥数试题及解析
在甲、乙、丙三个酒精溶液中,纯酒精的含量分别占48%、62.5%和2/3.已知三个酒精溶液中总量是100千克,其中甲酒精溶液量等于乙、丙两个酒精溶液的总量.三个溶液混合后所含纯酒精的百分数将达56%.那么,丙中纯酒精的`量是几千克?
解:设丙缸酒精溶液的重量为x千克,则乙缸为(50-x)千克.
50×48%+(50-x)×62.5%+x×(2/3)
=100×56%,
解得:x=18,
所以丙缸中纯酒精含量是18×(2/3)
=12(千克).
答:丙缸中纯酒精的量是12千克.
六年级奥数题分类篇七
1.(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?
2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米?
3.(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?
4.(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米?
5.(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少?
6.(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少?
7.(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?
8.(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?
9.(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?
10.(周期问题)7月1日是星期六,求10月1日是星期几?
六年级奥数题分类篇八
1、一个整数乘以13后,乘积的最后三位数是123,那么这样的整数中最小的是多少?
2、将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个乘积等于多少?
3、一个五位数,五个数字各不同,且是13的倍数,则符合以上条件的最小的数是多少?
4、一把钥匙只能开一把锁,现在有4把锁,但不知道哪把钥匙开哪把锁,最多要试几次能配好全部的钥匙和锁?
5、用长和宽是4公分和3公分的长方形小木块,拼成一个正方形,最少要用这样的木块多少块?
6、100个自然数,他们的总和是10000,在这些数里,奇数的个数比偶数是个数多,那么这些数里至多有多少个偶数?
7、975×935×972×,要使这个连乘积的最后四个数字都是零,在括号内最小应填多少?
8、有三个连续自然数,他们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是多少?
9、将进货的单价为40块的商品按50块售出时,每个的利润是10块,但只能卖出500个,已知这种商品每个涨价1块,其销售量就减少10个,为了赚得最多的利润,售价应定为多少?
10、一个三角形的三条边长是三个两位的连续偶数,他们的末位数字和能被7整除,这个三角形的周长等于多少?