教案中的教学设计可以帮助教师精确把握教学重点和难点,提高教学效率。编写教案需要不断更新教学理念和方法,适应时代变化和学生需求。请大家注意,以下是一份经验丰富的教师总结的教案,希望可以给大家提供一些借鉴。
比例的意义和基本性质教案篇一
导学目标:
2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
3、使学生初步感知事物间是相互联系、变化发展的。
导学重点:比例的意义和基本性质。
导学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
预习学案。
1、什么是比?
2、口算下面各比的值,哪些比的比值相等?
12:1634:185:310:66:10。
导学案。
探究比例的意义。
例1一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下。
时间(时)25。
路程(千米)80200。
80:2=200:55:3=10:66:10=9:15802=。
像这样由两个相等的比组成的式子我们把它叫做比例。
练习:
应用比例的意义判断下面的比例是否正确。
1、20:5=1:42、12:133、0.6:0.2=34:14。
先独立完成,再在小组内交流。
我们已经知道组成一个比的两个数分别叫做这个比的前项和后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
看课本48页,在图上这四面国旗的尺寸中,能找出哪些比来组面比例?
四人小组讨论,老师巡视,给予指导。
请小组汇报讨论结果,老师根据学生的汇报,将组成的比例分类板书在黑板上。
老师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。
二、比例的基本性质。
板书:
80:2=200:55:3=10:66:10=9:15。
内项。
外项。
观察黑板上的比例式,你以发现比例的内项与外项之间有什么关系吗?小组讨论。教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。
802=200580×5=2×200。
53=1065×6=3×10。
610=9156×15=10×9。
小组合作,举几个这样的例子验证一下。
从上面的计算我们发现,在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
观察黑板上分数形式表示的比例式,内项乘内项怎样乘?外项乘外项怎样乘?得到分子与分母交叉相乘。
练习。
1、6:3=8:52、0.2:2.5=4:50。
3、2:3=12:134、1.2:0.6=10:5。
课堂检测新课标第一网。
1、应用比例的意义判断下面的比例是否正确:
(1)3:5=9:15。
(2)2.5:5=25:0.5。
(3)1002=。
(4)13:2=16:4。
(1)6:9=9:12。
(2)1.4:2=7:10。
(3)5:2=58:14。
(4)34:110=7.5:1。
3.选择题(把正确答案的序号填入括号内)。
(1)()与3:5能组成比例。a.10:6b.13:15c.30:50。
(2)()与5:8能组成比例。a.15:18b.10:16c.3:5。
(3)4:5与()能组成比例。a.14:15b.8:10c.15:12。
(4)7:9与()能组成比例。a.70:90b.17:19c.3:4。
你能比较一下“比”与“比例”有什么联系与区别吗?
板书设计。
一、比例的意义二、比例的基本性质。
表示两个比相等的式子叫做比例。两个外项的积等于两个内项的积。
比例的意义和基本性质教案篇二
使学生理解比例的意义,会用比例的意义正确地判断两个比是否成比例,使学生理解比例的基本性质。
灵活地判断两个比是否组成比例。
投影机等。
1、什么叫做比?什么叫做比值?
2、求出下面各比值,哪些比的比值相等?
12:16:4.5:2.710:6。
1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。
2、引入新课。
(1)引导学生观察课本的表格后回答:
a、第一次所行驶的路程和时间的比是什么?
b、第二次所行驶的路程和时间的比是什么?
c、这两次比的比值各是什么?它们有什么关系?
板书:80:2=200:5或=。
a、表示两个比相等的式子叫做比例。
c、判断两个比能不能组成比例,关键是看两个比的比值是否相等。
d、做一做。(先练习,后讲评)。
(1)看书后回答:
a、什么叫做比例的项?
b、什么叫做比例的外项、内项?
(2)引导学生总结规律?
先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。
3、练习:判断下面的哪组比可以组成比例。
6:9和9:121.4:2和7:10。
比例的意义和基本性质教案篇三
1、使学生理解并掌握比例的意义,认识比例的各部分名称,探究比例的基本性质,学会应用比例的意义和基本性质判断两个比是否能组成比例,并能正确的组成比例。
2、培养学生的观察能力、判断能力。
自主、合作、探究。
课件。
一:创设情境,导入新课。
1、谈话,播放课件,引出主题图。
(播放视频,生观察,并说看到的内容)。
师:看到这些画面你的心情怎么样?(激动、兴奋、骄傲、自豪……)。
师:是啊,老师和你们一样,每当听到雄壮的国歌声,看见鲜艳的五星红旗,老师的心情也十分激动,国旗是我们伟大祖国的象征,是神圣的。
问:画面上这几面国旗有什么不同?(大小不一样)。
师:虽然这几面国旗大小不一样,但是长和宽的比值都是一样的,这节课我们就来研究有关比例的知识。(板书:比例)。
(课件出示主题图,让学生说出长和宽各是多少)。
问:你能根据这些国旗的长和宽的尺寸,写出长与宽的比,并求出比值吗?请同学们先写出学校内两面国旗长与宽的比,并求出比值。(生动手写比、求比值)。
二、引导探究,学习新知。
(生汇报求比值的过程)。
师:请同学们观察你求出的学校内两面国旗的比值,你有什么发现?(这两个比的比值相等)。
师:这两个比的比值相等,我用“=”把这两个比连起来,可以吗?(可以)。
师:从图上四面国旗才尺寸中你还能找出哪些比求出比值,也写成这样的等式呢?请同学们自己动笔试一试(生动手写比,求比值,写等式,并汇报)。
师:指学生汇报的等式小结,像这样由比值相等的两个比组成的等式就是比例,谁能概括出比例的意义?(板书课题,生汇报,是板书意义)。
问:判断两个比是否能组成比例,关键看什么?(关键看它们的比值是否相等)。
(小练习,课件出示)。
(1)自学比例的名称。
师:小结通过刚才的学习,我们理解了比例的意义,那么在比例中各部分名称是怎样的,各部分名称与各项在比例中的位置又有什么关系呢?打开书34页,自学34也上半部分,比例各部分的名称。(生自学名称,汇报,师板书名称)。
各小组派一名代表汇报合作学习发现的规律。
师:是不是所有的比例都具有这样的特性呢?分组验证课前写出的比例式。
师:问想一想,判断两个比能不能组成比例除了根据比例的意义去判断外还可以根据什么去判断?(生回答:根据比例的基本性质)。
三、巩固练习(见课件)。
四、汇报学习收获。
比例的意义和基本性质教案篇四
教学目标:
1、使学生理解并掌握比例的意义和基本性质,学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。
2、认识比例的各部分的名称。
3、培养学生的观察能力、判断能力。
学法引导:
引导学生观察、讨论、试算,探究比例的意义和比例的性质。
教学重点:
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学步骤:
一、铺垫孕伏。
师:同学们,今天我们数学课上有很多有趣的问题等你来解决,希望大家努力。我们首先来解决两个问题。
(二)反馈:(1)谁买的本子便宜些?能简单地说说你的理由。
(2)还有别的方法吗?
(3)这两个比可以用一个什么符号将它们连起来?为什么?
(三)(出示):2、3月10日下午2点,学校8米高的旗杆影子长5米,旁边一棵高120厘米的香樟树影子长75厘米,说出旗杆和香樟树与各自影长的比。(8:5120:75)。
这两个比能用一个等号连接起来吗?为什么?
二、探究新知。
(一)比例的意义。
2、得出结论:表示两个比相等的式子,叫做比例。(板书课题:比例的意义)。
3、完成“做一做”。
下面哪组中的两个比可以组成比例?把组成的比例写出来。(见书上“做一做)。
5、反馈:(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。
6、师生小结:如果判断两个比能否组成比例,最关键是看什么?
1、认识比例各部分的名称。
(1)自学课本。
前几节课上,我们已经知道,比中两个数分别叫做比的前项和后项。今天学习的比例中的四个数也有新名字,想知道吗?请看课本第二页是怎样给它们取名的。
(2)反馈:让学生看下面这些比例,说出它的外项和内项各是多少。
45:27=10:66:10=9:15。
:=6:406:02=:
2、探究比例的基本性质。
(2)学生汇报:
我发现在这两个比例里,两个外项的积都等于两个内项的积。
(3)查一查:你随便找几个比例,看一看这些比例中有没有这个有趣的现象?
(学生合作学习,汇报交流,得出结论)。
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
(板书课题:加上“和基本性质”,使课题完整。)。
3、练一练。
(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)。
谁能说出老师的秘诀?
(2)现在轮到我考你:4、3、6、86、9、4、7。
(学生回答后让他说出判断理由)。
(3)请你独立用4、3、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。
(4)阅读教科书第1——2页的内容并填空。
三、全课小结。
这节课我们学会了什么?
四、随堂练习。
1、说一说比和比例有什么区别。
2、练习一第2、3题。
比例的意义和基本性质教案篇五
1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
探究比例的基本性质和应用意义,会判断两个比能否组成比例。
一、创设情境,设疑激趣。
学生思考回答(挖掘学生生活经验)。
同学们知道的真多,说明同学们平时认真观察,是个有心人。
二、引导探究,自主建构。
活动一:探究比例的意义。
1、你了解到哪些关于国旗大小的知识?
学生交流,给学生充分的交流机会。
(1)猜测。
预设:
生1、长和宽的比值相等;
生2、宽和长的比值相等。
(2)小组验证。
每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。
(3)展示交流小组验证结果,学生到黑板前板书得出结论。
预设:每种国旗的长和宽的比都是3:2,他们的比值相等。
每种国旗的宽和长的比是2:3,他们的比值相等。
怎么判断两个比是不是成比例?
试一试,判断下面哪组中的两个比可以组成比例。
2:3和6:94:2和28:405:2和10:420:5和1:4。
2、小组内验证猜测结果。
3、展示验证猜测情况。得出结论,
预设:
“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。
“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。
教师归纳总结。
同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)。
三、强化训练、应用拓展。
同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?
1、判断下面哪组中的两个比可以组成比例?
(1)6:9和9:12。
(2)1/2:1/5和5/8:1/4。
(3)1、4:2和7:10。
(4)0、5:0、2和10:4。
2、判断。
(1)表示两个比相等的式子叫做比例()。
(2)0、6:1、6与3:4能组成比例()。
(3)如果4a=5b,那么a:b=4:5()。
3、填空。
5:2=80:()。
2:7=():5。
1、2:2、5=():4。
在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是()。
在一个比例里,两个内项的积是12,其中一个外项是2、4,另一个外项是()。
4、写出比值是5的两个比,并组成比例。
5、根据3a=5b把能组成的比例写出来。
四、自主反思、深入体验。
通过这节课的学习你有什么收获?
比例的意义和基本性质教案篇六
教学目标:
2、利用比例知识解决实际问题。
3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学过程:
一、谈话导入,创设情境:
我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
二、自主探究,学习新知。
1、8厘米。
出示。
6厘米。
4厘米。
3厘米。
(1)根据表中给出的数量写出有意义的比。
(2)哪些比是相关联的?
(3)根据以往经验,可将相等的两个比怎样?(用等号连接)。
教师并指出这些式子就是比例。
2、让学生任意写出比例,并让学生用自己的语言描述比例的意义。
3、教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。
4、写出比值是1/3的两个比,并组成比例。
1、比例和比有什么区别?
2、认识比例的各部分。
(1)让学生自己取。
(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的。
外项,中间的两项叫做比例的内项。
板书:8:6=4:3。
内项。
外项。
(3)让学生找出自己举的比例的内外项。
()。
12。
2
()。
=
(4)找出分数形式比例的'内外项位置又是怎样的?
3、出示【启迪学生思维,展开审美想象】。
(1)这个比例已知的是哪两项,要求的又是哪两项?学生试填。
(2)学生反馈,教师板书。
(3)你发现了什么?
(4)指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。
4、用比例性质验证你所写比例是否正确。
5、练习8:12=x:45。
0.5。
x
20。
32。
=
求比例中的未知项,叫做解比例。
如何证明你的解是正确的?
(三)小结:今天这堂课你有什么收获?
三、巩固练习。
1、下面哪几组中的两个比可以组成比例。
4
1
12:24和18:36。
0.4:和0.4:0.15。
14:8和7:4。
5
2
2、根据18x2=9x4写出比例。【体会到数学的逻辑美,规律美】。
3、从1、8、0.6、3、7五个数中。
(1)选出四个数,组成比例。
(2)任意选出3个数,再配上另一个数,组成比例。
(3)用所学知识进行检验。
四、实际应用。
不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”
同学们,如果你是汪骏强,你准备怎么办?
执教者方艳。
比例的意义和基本性质教案篇七
1、教学内容:
《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等的基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
2、教学目标:
根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
3、教学重、难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
4、教法、学法:
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的`指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。
二、说程序设计。
课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。
(一)复习导入。
让学生根据所给信息写出四个比。目的就是为新授进行铺垫,搭建脚手架,同时也为学生后面区分比例和比打下基础。
(二)教学新课。
第一部分:先出示几个比,让学生计算它们的比值,然后通过观察、比较,给这些比分类。通过学生自己的观察、发现,根据比值是否相等来分类。接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,然后列举一个反例,让学生对比观察,引导学生发现他们之间的共同特点,抽象概括出比例的意义。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的`能力。第三个练习是写出比值是4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。
第二部分:在认识比例的各部分名称时,我让学生看课件自学,然后让他们自己说说比例里各部分的名称。在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。
(三)巩固练习。
在巩固练习环节中,第1题是三个判断题,是对基本概念的巩固。第2题是根据比例的基本性质写出比例,这里需要从学生逆向思维的角度去解决问题。第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么在交流过程中就需要教师去引导学生发现方法,总结规律,使学生不仅把题做对,而且指导自己更好解决问题。第4题是拓展题,让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是下节课要研究的内容“解比例”。
三、说教后反思。
这节课是概念教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而且在知识点的获取时,让学生自主观察发现,分析比较,概括出比例的意义和基本性质,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
新课上完之后,我觉得这节课的内容学生掌握得还比较好,尤其是根据比例的基本性质写出比例,这里需要学生从逆向思维的角度去思考,因此需要加强学生这一方面知识的反复练习,才能使学生熟练掌握比例的基本性质。我觉得通过这一节课我学到了好多,作为一名教师,千万不能完全按照自己的我还要在实践中不断完善自己的教学方法。
文档为doc格式。
比例的意义和基本性质教案篇八
教学要求:
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、培养学生的思维能力。
教学过程:
知识整理。
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念。
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习。
1填空。
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例。
5/x=10/340/24=5/x。
3、完成26页2、3题。
综合练习。
1、a×1/6=b×1/5a:b=():()。
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()。
实践与应用。
1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
板书设计:整理和复习。
比例的意义。
比例比例的性质。
解比例。
正反比例正方比例的意义。
正反比例的判断方法。
比例应用题正比例应用题。
反比例应用体题。
比例的意义和基本性质教案篇九
1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
探究比例的基本性质和应用意义,会判断两个比能否组成比例。
学生思考回答(挖掘学生生活经验)。
同学们知道的真多,说明同学们平时认真观察,是个有心人。
1.你了解到哪些关于国旗大小的知识?
学生交流,给学生充分的交流机会。
(1)猜测。
预设:生1、长和宽的比值相等;生2、宽和长的比值相等,
(2)小组验证。
每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的.规律。
(3)展示交流小组验证结果,学生到黑板前板书得出结论。
预设:每种国旗的长和宽的比都是3:2,他们的比值相等。
每种国旗的宽和长的比是2:3,他们的比值相等。
怎么判断两个比是不是成比例?
试一试,判断下面哪组中的两个比可以组成比例。
2:3和6:94:2和28:405:2和10:420:5和1:4。
2.小组内验证猜测结果。
3.展示验证猜测情况。得出结论,
预设:
“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。
“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。
教师归纳总结。
同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)。
同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?
1.判断下面哪组中的两个比可以组成比例?
(1)6:9和9:12。
(2)1/2:1/5和5/8:1/4。
(3)1.4:2和7:10。
(4)0.5:0.2和10:4。
2.判断。
(1)表示两个比相等的式子叫做比例()。
(2)0.6:1.6与3:4能组成比例()。
(3)如果4a=5b,那么a:b=4:5()。
3.填空。
5:2=80:()。
2:7=():5。
1.2:2.5=():4。
在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是()。
在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是()。
4.写出比值是5的两个比,并组成比例。
5.根据3a=5b把能组成的比例写出来。
四、自主反思、深入体验。
通过这节课的学习你有什么收获?
比例的意义和基本性质教案篇十
《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材利用三角形的缩小做素材,引导学生根据图中的数据写出不同的比例,以其中一个比例为例教学比例各项的名称,在让学生说出其他几个比例的内项和外项。在观察各个比例中的内项和外项的基础上,发展规律,揭示比例的基本性质。教材还介绍了分数形式的比例基本性质的表达方法。“试一试”教学利用比例的基本性质判断两个比能否组成比例的方法。“练一练”和练习十第1-4题对所学知识进行巩固。
传统的课堂教学,学生面对的都是些经过人类长期积淀和锤炼的间接经验。由于教学大纲规定,许许多多的知识点,使得教师只能用简单的“传授——接受”的教学方式来进行。而学生只是记忆、再现这些知识点,沦为考试的奴隶。其实知识是死的,课堂教学绝不仅仅让学生拥有知识,更应该让学生拥有智慧,拥有获取知识的方法。
从教育心理学角度看,学生智慧的发展,离不开智慧的熏陶。智:是人类个体的认识过程或认知结构,即对外部信息的感知、整理、联想、储存很搜索、提取、操作,或通过此过程形成的认知水平。慧:是人类个体所认知事理的评判过程和评判标准。我校通过创设智慧课堂,使教学触及学生的世界,伴随他们的认知活动,做到了“以智促知”。
1、注重从学生已有的知识出发,主动建构知识。在教学“比例的基本性质”时,让学生自己选择例子来探索,在探索中发现规律,得到结论。让学生处于积极探索的状态,唤醒了学生学习中一些零散的体验,并在教师的引导下主动将这些体验“数学化”,提炼出数学知识。
在教学中,不仅要求学生掌握抽象的数学结论,更应注重学生的“发现”意识,引导学生参与探讨知识的形成过程,尽量挖掘学生的潜能,能让学生通过努力,自己解决问题。这一教学过程,让学生通过计算、观察、发现、自学的方式,使学生在自己探索中学习知识,发现知识,并通过讨论,说出判断两个比能否组成比例的依据,促进了学生学习的顺利进行。
2、用教材教,体现教学的民主性。因为学生对比的知识了解甚多,所以在研究“比例的基本性质”的时候,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳法研究的过程,并渗透科学态度的教育。
整个教学过程力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。如要求学生用自己的语言归纳比例的基本性质,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易到难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。
3、在运用比例的基本性质进行判断时,要求学生讲明理由,培养学生有根据思考问题的良好习惯;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯。
4、给予学生自主探究的时间、自由驰骋的思考空间,允许他们有不同的想法、不同的方法,在开放式、个性化的学习中生成灵感,碰撞智慧。正是学生用自己独特的学习方式来解决问题,课才变得生动和真实,学习才显得如此活泼和有效。数学的学习成了充满灵性的创造过程,成了放飞心灵的快乐之旅。课堂已不仅是学科知识传递的殿堂,更是智慧培育的圣殿。
叶澜教授曾说:“把课堂还给学生,让课堂焕发生命活力”,确实我们教师应该把课堂看作是学生演绎精彩生命的舞台,把主动权、选择权下放给学生,让学生去思考、去探索、去实践,才能激起学生的求知欲望,才会有层出不穷的生成,使课堂充满生命的活力。
“比例的意义和基本性质”这节课是概念教学,不太好讲。在上课之前我感觉自己做了充分的准备。从学生已有的知识经验入手,方便快捷,为新课做好准备。激发学生的学习兴趣和求知欲望,使学生在探索中学习。然后在教学比例的基本性质时,我让学生看书自学,再小组交流,这样符合“新课标”的要求,体现了教师的主导作用和学生的主体地位。本节课的学习方式是多样的,有观察比较、小组交流、师生交流、同位交流、多方验证。另外,为了培养学生的能力,我采用了自主观察与讨论相结合的教学方式,而且整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完课之后,我发现还存在很多问题。
1、教师激励性的语言还欠缺,还不能用多种语言来激励学生。如果感情更深些,更能激起学生的学习兴趣,使他们能更好的参参与学习。
2、上课心态、情绪还不够平稳,计算机技能、教学机智、自身素养还有待提高。为促进教学目标的顺利完成最后有点赶时间。
3、面对一些即时生成的课程资源,我还不能及时抓彩,把这些有效的教学资源开发、放大,让它临场闪光,从而激发学生参与课堂的热情,让“死”的知识活起来,让“静”的课堂动起来,变单纯的“传递”与“接受”为积极主动的“发展”与“建构”。
我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。作为一名教师,在今后的日子里,还要好好努力,在实践中不断完善自己的教学方法。
比例的意义和基本性质教案篇十一
教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习。
1.说说正、反比例的意义。
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从a地到b地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出的盐和海水重量。
3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(二)新课。
(1)用以前方法解答。
(2)研究用比例的方法解答。
题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?
能不能利用这个关系式列比例解答?
解比例,同学自已完成,及时纠正。检验。
改变例1中的条件和问题。
1、以前的发法解答。
2、怎样用比例知识解答?
3讨论结果填书上。
4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。
整理和复习。
教学要求:
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、培养学生的思维能力。
教学过程:
知识整理。
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念。
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习。
1填空。
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例。
5/x=10/340/24=5/x。
3、完成26页2、3题。
综合练习。
1、a×1/6=b×1/5a:b=():()。
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()。
实践与应用。
1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。