当前位置:网站首页 >> 文档 >> 不等式的证明方法 导数不等式的证明(模板五篇)

不等式的证明方法 导数不等式的证明(模板五篇)

格式:DOC 上传日期:2024-12-05 01:49:01
不等式的证明方法 导数不等式的证明(模板五篇)
    小编:admin

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

不等式的证明方法 导数不等式的证明篇一

1.比较法:

比较法是证明不等式的最基本、最重要的方法之一,它可分为作差法、作商法

(1)作差比较:

①理论依据a-b>0

a>b;a-b=0

a=b;a-b<0

a

⑴作差:对要比较大小的两个数(或式)作差。

⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。⑶判断差的符号:结合变形的结果及题设条件判断差的符号。

注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。(2)作商法:①要证a>b(b>0),只要证

;要证a0),只要证②证明步骤:作商→变形→判断与1的关系 常用变形方法:一是配方法,二是分解因式

2.综合法:所谓综合法,就是从题设条件和已经证明过的基本不等式和不等式的性质推导出所要证明的不等式成立,可简称为由因导果。常见的基本不等式有 |a|≥0, a2b22ab,abab 2,ababab 分析法:从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法叫分析法,分析法的思想是“执果索因”:即从求证的不等式出发,探求使结论成立的充分条件,直至已成立的不等式。

基本步骤:要证„„只需证„„,只需证„„ 4 分析综合法

单纯地应用分析法证题并不多见,常常是在分析的过程中,又综合条件、定理、常识等因素进行探索,把分析与综合结合起来,形成分析综合法。反证法:先假设所要证明的不等式不成立,即要证的不等式的反面成立,如要证明不等式mn,由题设及其他性质,推出矛盾,从而否定假设,肯定m

具体放缩方式有公式放缩和利用某些函数的单调性放缩。常用的技巧有:舍去一些正项或负项;在和或积中换大(或换小)某些项;扩大(或缩小)分式的分子(或分母)等,放缩时要注意不等号的一致性。放缩法的方法有:

⑴添加或舍去一些项,如:a21a;n(n1)n ⑵将分子或分母放大(或缩小)⑶利用基本不等式,如:lg3lg5(n(n1)2⑷利用常用结论: n(n1)lg3lg5)lg15lg16lg4 2ⅰ、k1k1k1k12k;

ⅱ、1111; k2k(k1)k1k1111(程度大)2k(k1)kk1kⅲ、12k11111();(程度小)2k1(k1)(k1)2k1k17 换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如: 已知x2y2a2,可设xacos,yasin; 已知x2y21,可设

xrcos,yrsin(0r1);

x2y2已知221,可设xacos,ybsin;

abx2y2已知221,可设xasec,ybtan;

ab8、判别式法:判别式法是根据已知或构造出来的一元二次方程,一元二次不等式,二次函数的根、解集、函数的性质等特征确定出其判别式所应满足的不等式,从而推出欲证的不等式的方法。

9、其它方法 最值法:恒成立

恒成立

构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;

'不等式的证明方法 导数不等式的证明篇二

不等式的证明

不等式的证明,基本方法有

比较法:(1)作差比较法

(2)作商比较法

综合法:用到了均值不等式的知识,一定要注意的是一正二定三相等的方法的使用。

分析法:当无法从条件入手时,就用分析法去思考,但还是要用综合法去证明。两个方法是密不可分的。

换元法:把不等式想象成三角函数,方便思考

反证法:假设不成立,但是不成立时又无法解出本题,于是成立

放缩法:

用柯西不等式证。等等……

高考不是重点,但是难点。

大学数学也会讲到柯西不等式。

不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法

1.综合法:由因导果。

2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:

(1)添加或舍去一些项,如:

(2)利用基本不等式,如

3)将分子或分母放大(或缩小):

5.换元法:换元的目的就是减少不等式中变量,以使问题

化难为易、化繁为简,常用的换元有三角换元和代数换元。

6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。

证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。

7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。

8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。

9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。

10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。当a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。当a<0时,f(x)>0(或<0).△>0(或<0)。

二、部分方法的例题

1.换元法

换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

注意:在不等式的证明中运用换元法,能把高次变为低次,分式变为整式,无理式变为有理式,能简化证明过程。尤其对含有若干个变元的齐次轮换式或轮换对称式的不等式,通过换元变换形式以揭示内容的实质,可收到事半功倍之效。

2.放缩法

欲证a≥b,可将b适当放大,即b1≥b,只需证明a≥b1。相反,将a适当缩小,即a≥a1,只需证明a1≥b即可。

注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。

3.几何法

数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。

注意:这类方法对几何的熟悉程度以及几何与代数的相互联系能力要求比较高。

每一种不等式的证明方法基本上都有一种固定的模式可以去对比,但数学的特点就在于它的灵活性非常强,所以不等式的证明中的题目会有很多种变化,这对学习者的要求是非常高的,这就需要我们在今后的学习中多总结、归纳,才能达到我们学习的效果。具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学对于老师讲过的题会做,其他的题就不会做,只会依样画瓢,题目有些小的变化就无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其他条件有关的,或与结论有关的,或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,俗话说,条条大路通罗马。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地应对那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;有了自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。'不等式的证明方法 导数不等式的证明篇三

金牌师资,笑傲高考

2013年数学vip讲义

【例1】 设a,b∈r,求证:a2+b2≥ab+a+b-1。

【例2】 已知0

【例3】 设a=a+d,b=b+c,a,b,c,d∈r+,ad=bc,a=max{a,b,c,d},试比较a与b的大小。

因a、b的表达形式比较简单,故作差后如何对因式进行变形是本题难点之一。利用等式ad=bc,借助于消元思想,至少可以消去a,b,c,d中的一个字母。关键是消去哪个字母,因条件中已知a的不等关系:a>b,a>c,a>d,故保留a,消b,c,d中任一个均可。

由ad=bc得:dbca1abbccaabcabc≥1。

bcabcab(ab)(ac)a0bcacaa-b=a+d-(b+c)=a =ab c(ab)a

【例4】 a,b,c∈r,求证:a4+b4+c4≥(a+b+c)。

不等号两边均是和的形式,利用一次基本不等式显然不行。不等号右边为三项和,根据不等号方向,应自左向右运用基本不等式后再同向相加。因不等式左边只有三项,故把三项变化六项后再利用二元基本不等式,这就是“化奇为偶”的技巧。

左=12(2a42b2242c)22412[(a24b)(b22244c)(c2244a)]24

≥12(2ab2bc2ca)abbcca

2发现缩小后没有达到题目要求,此时应再利用不等式传递性继续缩小,处理的方法与刚才类似。

中天教育咨询电话:0476-8705333

第1页/共9页 金牌师资,笑傲高考

ab1212

2013年数学vip讲义

22bc2222ca2222212(2ab22222bc22222ca)22

ca)(ca2[(abbc)(bc22ab)]22≥(2abc2abc22abc)ab(abc)1a

1c【例5】(1)a,b,c为正实数,求证:(2)a,b,c为正实数,求证:

a21bb2≥

c21ab1bc1ac;

bcacab≥

abc2。

(1)不等式的结构与例4完全相同,处理方法也完全一样。

(2)同学们可试一试,再用刚才的方法处理该题是行不通的。注意到从左向右,分式变成了整式,可考虑在左边每一个分式后配上该分式的分母,利用二元基本不等式后约去分母,再利用不等式可加性即可达到目的。试一试行吗?

a2bcb2(bc)≥2a2bcb2(bc)2a

acc2(ac)≥2ac(ac)2bab(ab)≥2c2ab(ab)2c

相加后发现不行,a,b,c的整式项全消去了。为了达到目的,应在系数上作调整。

a2bcbc4≥a,b2acac4≥b,c2abab4≥a 相向相加后即可。

【例6】 x,y为正实数,x+y=a,求证:x+y≥

2a22。

思路一;根据x+y和x2+y2的结构特点,联想到算术平均数与平方平均数之间的不等关系。∵ xy22≤2x2y22

2∴ xy≥(xy)2a22

思路二:因所求不等式右边为常数,故可从求函数最小值的角度去思考。思路一所用的是基本不等式法,这里采用消元思想转化为一元函数,再用单调性求解。换元有下列三种途径:

途径1:用均值换元法消元: 令 x2a2m,yaa22m

22则 xy(m)(m)2m222aa22≥

a22

途径2:代入消元法: y=a-x,0a2)2a22≥

a22

中天教育咨询电话:0476-8705333

第2页/共9页 金牌师资,笑傲高考

途径3:三角换元法消元:

令 x=acos2θ,y=asin2θ,θ∈(0,]

22013年数学vip讲义

则 x2+y2=a2(cos4θ+sin4θ)=a2[(sin2θ+cos2θ)2-2sin2θcos2θ]

=a[1-2(sin2θ)]=a(1-22122

12sin2θ)≥

a22

注:为了达到消元的目的,途径1和途径3引入了适当的参数,也就是找到一个中间变量表示x,y。这种引参的思想是高中数学常用的重要方法。【例7】 已知a>b>0,求证:(ab)8a2ab2ab(ab)8b2。

12所证不等式的形式较复杂(如从次数看,有二次,一次,次等),难以从某个角度着手。故考虑用分析法证明,即执果索因,寻找使不等式成立的必要条件。实际上就是对所证不等式进行适当的化简、变形,实际上这种变形在相当多的题目里都是充要的。

ab2abab2ab2b)(a(a(a2b)2

ab(ab)b)(a8a2所证不等式可化为∵ a>b>0 ∴ ab ∴ ab0

b)2(a2b)2(ab)(a8b2b)2

∴ 不等式可化为:(a4ab)21(a4bb)2

2(ab)4a即要证

24b(ab)ab2a只需证

2bab在a>b>0条件下,不等式组显然成立 ∴ 原不等式成立 【例8】 已知f(x)=24xx38,求证:对任意实数a,b,恒有f(a)112.不等号两边字母不统一,采用常规方法难以着手。根据表达式的特点,借助于函数思想,可分别求f(a)及g(b)=b2-4b+f(a)112的最值,看能否通过最值之间的大小关系进行比较。

82(2)a2a24aa3882a882a≤

282a82a8422

令 g(b)=b2-4b+11232 ≥32 g(b)=(b-2)2+

中天教育咨询电话:0476-8705333

第3页/共9页 金牌师资,笑傲高考

∵ 3222013年数学vip讲义

∴ g(b)>f(a)注:本题实际上利用了不等式的传递性,只不过中间量为常数而已,这种思路在两数大小比较时曾讲过。由此也说明,实数大小理论是不等式大小理论的基础。

【例9】 已知a,b,c∈r,f(x)=ax2+bx+c,当|x|≤1时,有|f(x)|≤1,求证:

(1)|c|≤1,|b|≤1;

(2)当|x|≤1时,|ax+b|≤2。

这是一个与绝对值有关的不等式证明题,除运用前面已介绍的不等式性质和基本不等式以外,还涉及到与绝对值有关的基本不等式,如|a|≥a,|a|≥-a,||a|-|b||≤|a±b|≤|a|+|b|,|a1±a2±„±an|≤|a1|+|a2|+„+|an|。就本题来说,还有一个如何充分利用条件“当|x|≤1时,|f(x)|≤1”的解题意识。

从特殊化的思想出发得到: 令 x=0,|f(0)|≤1 即 |c|≤1 当x=1时,|f(1)|≤1;当x=-1时,|f(-1)|≤1 下面问题的解决试图利用这三个不等式,即把f(0),f(1),f(-1)化作已知量,去表示待求量。∵ f(1)=a+b+c,f(-1)=a-b+c ∴ b12[f(1)f(1)] 12|f(1)f(1)|≤12[|f(1)||f(1)|]≤

12(11)≤1 ∴ |b|(2)思路一:利用函数思想,借助于单调性求g(x)=ax+b的值域。

当a>0时,g(x)在[-1,1]上单调递增 ∴ g(-1)≤g(x)≤g(1)∵ g(1)=a+1=f(1)-f(0)≤|f(1)-f(0)|≤|f(1)|+|f(0)|≤2 g(-1)=-a+b=f(0)-f(-1)=-[f(-1)-f(0)]

≥-|f(-1)-f(0)|≥-[|f(-1)|+|f(0)|]≥-2 ∴-2≤g(x)≤2 即 |g(x)|≤2 当a<0时,同理可证。

思路二:直接利用绝对值不等式

为了能将|ax+b|中的绝对值符号分配到a,b,可考虑a,b的符号进行讨论。当a>0时

|ax+b|≤|ax|+|b|=|a||x|+|b|≤|a|+|b|≤a+|b| 下面对b讨论

① b≥0时,a+|b|=a+b=|a+b|=|f(1)-f(0)| ≤ |f(1)|+|f(0)|≤2; ② b<0时,a+|b|=a-b=|a-b|=|f(-1)-f(0)|≤|f(-1)|+f(0)|≤2。∴ |ax+b|≤2 当a<0时,同理可证。

评注:本题证明过程中,还应根据不等号的方向,合理选择不等式,例如:既有|a-b|≥|a|-|b|,又有|a-b|≥|b|-|a|,若不适当选择,则不能满足题目要求。

中天教育咨询电话:0476-8705333

第4页/共9页 金牌师资,笑傲高考

2013年数学vip讲义

1、设a,b为正数,且a+b≤4,则下列各式一定成立的是 a、c、1a121b1a≤141b b、≤1 d、141a≤

1a1b≤

1b≥1

2、已知a,b,c均大于1,且logac·logbc=4,则下列各式中一定正确的是 a、ac≥b b、ab≥c c、bc≥a d、ab≤c

5、已知a,b,c>0,且a+b>c,设m=

a4abbcc4c,n=,则mn的大小关系是

a、m>n b、m=n c、m

6、已知函数f(x)=-x-x3,x1,x2,x3∈r,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值 a、一定大于零 b、一定小于零 c、一定等于零 d、正负都有可能

7、若a>0,b>0,x111()2ab1ab1ab,y,z,则

a、x≥y>z b、x≥z>y c、y≥x>z d、y>z≥x

8、设a,b∈r,下面的不等式成立的是 a、a+3ab>b b、ab-a>b+ab c、(二)填空题

9、设a>0,b>0,a≠b,则aabb与abba的大小关系是__________。

10、若a,b,c是不全相等的正数,则(a+b)(b+c)(c+a)______8abc(用不等号填空)。

12、当00且t≠1时,logat与log21t1a2

2aba1b1 d、a+b≥2(a-b-1)

22的大小关系是__________。

n13、若a,b,c为rt△abc的三边,其中c为斜边,则an+bn与c(其中n∈n,n>2)的大小关系是________________。

(三)解答题

14、已知a>0,b>0,a≠b,求证:a

15、已知a,b,c是三角形三边的长,求 证:1

中天教育咨询电话:0476-8705333

第5页/共9页

abcbaccab2。

babba。金牌师资,笑傲高考

16、已知a≥0,b≥0,求证:

18、若a,b,c为正数,求证:

19、设a>0,b>0,且a+b=1,求证:(a

20、已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a,b,c全为正数。

1a)(b1b)2541a1b1ca82013年数学vip讲义

12(ab)214(ab)≥aaba。

b383c38。

abc≥。

中天教育咨询电话:0476-8705333

第6页/共9页

'不等式的证明方法 导数不等式的证明篇四

§14不等式的证明

不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型.证明不等式就是对不等式的左右两边或条件与结论进行代数变形和化归,而变形的依据是不等式的性质,不等式的性分类罗列如下: 不等式的性质:abab0,abab0.这是不等式的定义,也是比较法的依据.对一个不等式进行变形的性质:

(1)abba(对称性)

(2)abacbc(加法保序性)

(3)ab,c0acbc;ab,c0acbc.(4)ab0anbn,nanb(nn*).对两个以上不等式进行运算的性质.(1)ab,bcac(传递性).这是放缩法的依据.(2)ab,cdacbd.(3)ab,cdacbd.(4)ab0,dc0,含绝对值不等式的性质:

(1)|x|a(a0)x2a2axa.(2)|x|a(a0)x2a2xa或xa.(3)||a||b|||ab||a||b|(三角不等式).(4)|a1a2an||a1||a2||an|.ab,ad 证明不等式的常用方法有:比较法、放缩法、变量代换法、反证法、数学归纳法、构造函数方法等.当然在证题过程中,常可“由因导果”或“执果索因”.前者我们称之为综合法;后者称为分析法.综合法和分析法是解决一切数学问题的常用策略,分析问题时,我们往往用分析法,而整理结果时多用综合法,这两者并非证明不等式的特有方法,只是在不等式证明中使用得更为突出而已.此外,具体地证明一个不等式时,可能交替使用多种方法.例题讲解 1.a,b,c0,求证:ab(ab)bc(bc)ca(ca)6abc.abc32.a,b,c0,求证:abc(abc)

abc.a2b2b2c2c2a2a3b3c3.3.:a,b,cr,求证abc2c2a2bbccaab

4.设a1,a2,,ann*,且各不相同,求证:1

12131aa3ana12..n2232n25.利用基本不等式证明a2b2c2abbcca.446.已知ab1,a,b0,求证:ab1.8

7.利用排序不等式证明gnan

8.证明:对于任意正整数r,有(1

1n1n1)(1).nn11119.n为正整数,证明:n[(1n)1]1n(n1)nn1.23n

1n 课后练习

1.选择题

(1)方程x-y=105的正整数解有().(a)一组(b)二组

(c)三组

(d)四组

(2)在0,1,2,„,50这51个整数中,能同时被2,3,4整除的有().(a)3个(b)4个

(c)5个

(d)6个 2.填空题

(1)的个位数分别为_________及_________.4

5422(2)满足不________.等式10≢a≢10的整数a的个数是x×10+1,则x的值(3)已知整数y被7除余数为5,那么y被7除时余数为________.(4)求出任何一组满足方程x-51y=1的自然数解x和y_________.3.求三个正整数x、y、z满足

23.4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?

5.求的整数解.6.求证可被37整除.7.求满足条件的整数x,y的所有可能的值.8.已知直角三角形的两直角边长分别为l厘米、m厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.9.如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.课后练习答案

1.d.c.2.(1)9及1.(2)9.(3)4.(4)原方程可变形为x=(7y+1)+2y(y-7),令y=7可得x=50.223.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z都不能是整数.4.可仿例2解.5.分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方法...

略解:a2b22ab,同理b2c32bc,c2a22ca;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.22xnx12x2如x1x2xn,可在不等式两边同时加上x2x3x1x2x3xnx1.再如证(a1)(b1)(ac)3(bc)3256a2b2c3(a,b,c0)时,可连续使用基本不等式.ab2a2b2)(2)基本不等式有各种变式

如(等.但其本质特征不等式两边的次22数及系数是相等的.如上式左右两边次数均为2,系数和为1.6.8888≡8(mod37),∴8888333

3222

2≡8(mod37).2222

27777≡7(mod37),7777≡7(mod37),8888238+7=407,37|407,∴37|n.22

3+7777

3333

≡(8+7)(mod37),而

237.简解:原方程变形为3x-(3y+7)x+3y-7y=0由关于x的二次方程有解的条件△≣0及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).8.∵l+m=n,∴l=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l,n-m=1.于是2222l=n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l+2l+1=(l+1).即2(l+m+1)是完全平方数.222

229.易知p≠q,不妨设p>q.令(4-mn)p=m+2,解此方程可得p、q之值.=n,则m>n由此可得不定方程

例题答案:

1.证明:ab(ab)bc(bc)ca(ca)6abc

a(b2c22bc)b(a2c22ac)c(a2b22ab)

a(bc)2b(ca)2c(ab)2

0

ab(ab)bc(bc)ca(ca)6ab.c

评述:(1)本题所证不等式为对称式(任意互换两个字母,不等式不变),在因式分解或配方时,往往采用轮换技巧.再如证明a2b2c2abbcca时,可将a2b2

1(abbcca)配方为[(ab)2(bc)2(ca)2],亦可利用a2b22ab,2b2c22bc,c2a22ca,3式相加证明.(2)本题亦可连用两次基本不等式获证.2.分析:显然不等式两边为正,且是指数式,故尝试用商较法.不等式关于a,b,c对称,不妨abc,则ab,bc,acr,且

ab,,c(abc)abc3a2abc3b2bac3c2cab3aab3aac3bba3bbc3cca3ccb3

ab3a()bb()cbc3a()cac31.评述:(1)证明对称不等式时,不妨假定n个字母的大小顺序,可方便解题.(2)本题可作如下推广:若ai0(i1,2,,n),则a11a22anaaan(a1a2an)a1a2ann.(3)本题还可用其他方法得证。因aabbabba,同理bbccbccb,ccaacaac,另aabbccaabbcc,4式相乘即得证.(4)设abc0,则lgalgblgc.例3等价于algablgbalgbblga,类似例4可证algablgbclgcalgbblgcclgaalgcblgbclga.事实上,一般地有排序不等式(排序原理): 设有两个有序数组a1a2an,b1b2bn,则a1b1a2b2anbn(顺序和)

a1bj1a2bj2anbjn(乱序和)a1bna1bn1anb1(逆序和)

其中j1,j2,,jn是1,2,,n的任一排列.当且仅当a1a2an或b1b2bn时等号成立.排序不等式应用较为广泛(其证明略),它的应用技巧是将不等式两边转化为两个有序数组的积的形式.如a,b,cr时,a3b3c3a2bb2cc2aa2ab2bc2c

a2b2c2111111abbcca;abca2b2c2a2b2c2bcabcaabc222.3.思路分析:中间式子中每项均为两个式子的和,将它们拆开,再用排序不等式证明.111111,则a2b2c2(乱序和)cbacab111111a2b2c2(逆序和),同理a2b2c2(乱序和)abccab111a2b2c2(逆序和)两式相加再除以2,即得原式中第一个不等式.再考虑数abc111333组abc及,

222不妨设abc,则abc,4.分析:不等式右边各项

ai1a;可理解为两数之积,尝试用排序不等式.i22ii设b1,b2,,bn是a1,a2,,an的重新排列,满足b1b2bn,又1111.22223nanbna2a3b2b3.由于b1,b2,bn是互不相同的正整数,b122222n2323nb3bnb11故b11,b22,,bnn.从而b12,原式得证.12222n23n所以a1评述:排序不等式应用广泛,例如可证我们熟悉的基本不等式,a2b2abba,a3b3c3a2bb2cc2aaabbbcccaabcbaccab3abc.5.思路分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方..法.a2b22ab,同理b2c32bc,c2a22ca;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.22xnx12x2如x1x2xn,可在不等式两边同时加上x2x3x1x2x3xnx1.再如证(a1)(b1)(ac)3(bc)3256a2b2c3(a,b,c0)时,可连续使用基本不等式.ab2a2b2)(2)基本不等式有各种变式

如(等.但其本质特征不等式两边的次数及22系数是相等的.如上式左右两边次数均为2,系数和为1.6.思路分析:不等式左边是a、b的4次式,右边为常数式呢.44要证ab1,如何也转化为a、b的4次811,即证a4b4(ab)4.8833评述:(1)本题方法具有一定的普遍性.如已知x1x2x31,xi0,求证:x1 x211133求证:x1x2x2x3 x3.右侧的可理解为(x1x2x3).再如已知x1x2x30,3332+x3x10,此处可以把0理解为(x1x2x3),当然本题另有简使证法.38(2)基本不等式实际上是均值不等式的特例.(一般地,对于n个正数a1,a2,an)

调和平均hnn111a1a2an 几何平均gnna1a2an 算术平均ana1a2an

n22a12a2an平方平均qn

2这四个平均值有以下关系:hngnanqn,其中等号当且仅当a1a2an时成立.7.证明: 令biai,(i1,2,,n)则b1b2bn1,故可取x1,x2,xn0,使得 gnb1

xxx1x,b22,,bn1n1,bnn由排序不等式有: x2x3xnx1b1b2bn

=xx1x2n(乱序和)x2x3x1111x2xn(逆序和)x1x2xn x1

=n,aaa2ana1a2nn,即1n111,,各数利用算术平均大于等于几何平均即可得,gnan.a1a2an 评述:对8.分析:原不等式等价于n1(1)1平均,而右边为其算术平均.n11nn1,故可设法使其左边转化为n个数的几何n111111n21(1)n(1)(1)1(1)(1)11.n1nnnnnn1n1n个n1 评述:(1)利用均值不等式证明不等式的关键是通过分拆和转化,使其两边与均值不等式形式相近.类似可证(11n11n2)(1).nn1(2)本题亦可通过逐项展开并比较对应项的大小而获证,但较繁.9.证明:先证左边不等式

111(1n)123n1111n123n (1n)n

n111(11)(1)(1)(1)123n (1n)nn34n1223nn1n(*)

nn[(1n)1]121n1n111123n

n 34n123nn234n1nn1.n23n (*)式成立,故原左边不等式成立.其次证右边不等式

1111n(n1)nn1

23n1 n1n1n(1111111)(1)(1)(1)23nn1123n n1nn112n1123n

(**) n1nn1

(**)式恰符合均值不等式,故原不等式右边不等号成立.

不等式的证明方法 导数不等式的证明篇五

不等式证明

不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法

1.综合法:由因导果。

2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:

(1)添加或舍去一些项,如:

2)利用基本不等式,如:

(3)将分子或分母放大(或缩小):

5.换元法:换元的目的就是减少不等式中变量,以使问题

化难为易、化繁为简,常用的换元有三角换元和代数换元。

6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。

证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。

7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。

8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。

9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。

10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。当a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。当a<0时,f(x)>0(或<0).△>0(或<0)。

二、部分方法的例题

1.换元法

换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

注意:在不等式的证明中运用换元法,能把高次变为低次,分式变为整式,无理式变为有理式,能简化证明过程。尤其对含有若干个变元的齐次轮换式或轮换对称式的不等式,通过换元变换形式以揭示内容的实质,可收到事半功倍之效。

2.放缩法

欲证a≥b,可将b适当放大,即b1≥b,只需证明a≥b1。相反,将a适当缩小,即a≥a1,只需证明a1≥b即可。

注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。

3.几何法

数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。

全文阅读已结束,如果需要下载本文请点击

下载此文档
猜你喜欢 网友关注 本周热点 精品推荐
总结是一种思维的整理和归纳过程,通过它我们可以更好地理解和应用所学知识。采用逻辑清晰、条理分明的结构,使总结更易读和理解。这些总结范文是经过精心筛选和整理的,具
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。山东农
制定计划时,我们需要考虑到各种因素,包括时间、成本、资源等。计划的制定需要综合考虑各种因素,包括时间、资源、风险等。1制定计划的过程中,可以借助工具和技术来提高
在实施任何项目或行动之前,制定一个明确的方案是非常重要和必要的。方案的制定应该遵循科学合理、客观公正、民主参与的原则。以下是一些典型的方案案例,我们可以从中学习
在现在社会,报告的用途越来越大,要注意报告在写作时具有一定的格式。那么报告应该怎么制定才合适呢?下面是小编带来的优秀报告范文,希望大家能够喜欢!社区纪检组织换届
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。大家想知道怎么样才能写一篇比较优质的教案吗?以下我给大家整理
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。什么样的计划才是有效的呢?下面是我给大家整理的计划范文,欢迎大家阅读分享借
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接
计划可以使我们更有组织性,避免东拼西凑地应付事务。制定计划时,我们需要保持积极的心态,相信自己能够按照计划的步骤实现目标。以下是一些关于计划的案例分析,希望对大
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。优秀的计划都具备一些什么特点呢?又该怎么写呢?这里给大家分享一些
观察可以让我们对周围的事物有更深刻的认识和理解。在写总结之前,我们可以参考一些优秀的总结样本,借鉴别人的经验和写作技巧。这些范文展示了不同人对于总结的不同理解和
随着个人素质的提升,报告使用的频率越来越高,我们在写报告的时候要注意逻辑的合理性。写报告的时候需要注意什么呢?有哪些格式需要注意呢?下面是我给大家整理的报告范文
时间流逝得如此之快,前方等待着我们的是新的机遇和挑战,是时候开始写计划了。计划书写有哪些要求呢?我们怎样才能写好一篇计划呢?下面是我给大家整理的计划范文,欢迎大
总结是对工作、学习等方面的成果进行整理和总结的过程。社交礼仪是在社交场合中必须遵守的规范,我们要注重培养社交礼仪。总结是一个不断学习和提升的过程,我们要善于总结
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎
时间流逝得如此之快,前方等待着我们的是新的机遇和挑战,是时候开始写计划了。写计划的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编收集整理的工作计划书范文,
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?以下是
为了确保事情或工作有序有效开展,通常需要提前准备好一份方案,方案属于计划类文书的一种。方案能够帮助到我们很多,所以方案到底该怎么写才好呢?下面是小编帮大家整理的
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。大家想知道怎么样才
总结是一个评估自己成长和探索进步的机会。写总结时,我们可能需要调整自己的思维方式,从目标导向转变为问题导向。希望以下总结范文能够激发大家写作总结的灵感和创造力。
总结是对过去一段时间内的学习、工作、生活等方面进行归纳和总结的一种方法。总结要具备可操作性,可以提出切实可行的建议和方案,为未来的改进提供参考。以下是小编为大家
在总结中,我们要积极正面地评价自己的工作和努力,同时也要承认和反思不足和失误,以期更好地提升自己。在写总结的过程中,可以请教一些专业人士或老师的意见和建议。希望
总结既是一种总结经验的过程,也是一种反思和思考的过程。在总结的过程中,要注重分析和总结经验教训,找出问题的原因和解决的方法。小编精选的总结范文涵盖了各个领域的经
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。总结怎么写才能发挥它最大的作用呢
教案的编写应当合理安排教学时间,确保学生学习的连贯性和有效性。教案的编写要灵活运用教学方法,提高教学效果和学生的学习兴趣。下面是一些值得推荐的教案,供大家学习和
总结的内容应该包括事情的起因、过程和结果等方面的描述。写一篇完美的总结对于我们的学习和工作至关重要,我们应该如何做?以下是一些关于总结的范文,供大家参考和借鉴。
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。什么样的总结才是有效的呢?下面是
报告的内容通常包括背景介绍、问题分析、数据分析、结果呈现和建议等部分,以满足受众对信息的需求。最后,要进行报告的审校和修改,确保语法、拼写和格式的准确无误。如果
心得体会是在我们学习和工作生活等方面的实践中所获得的感悟和总结,它可以帮助我们更好地认识自己,提升自己的能力。心得体会是我们对于经历和体验的一种深刻思考和反思,
总结心得体会可以帮助我们发现自身的优势和不足,找到提升的方向。在写心得体会时,要注意术语、词汇与表达准确性。请看下面的范文,这些都是写作心得的精华,希望能够帮助
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总
总结可以帮助我们抓住工作、学习等过程中的亮点和问题,进一步提升个人能力。在写总结时,可以先罗列出自己在某个时间段内取得的成绩、遇到的问题和收获。接下来,我们将分
通过报告,可以清晰地呈现研究结果、市场分析、项目进展等内容。报告的结尾要概括主要观点和结论,并提出建议和展望。以下是小编为大家精心整理的报告范文,供大家参考和学
总结可以让我们更清晰地认识到自己在某个领域的优势和不足。在写总结之前,我们需要对所总结的内容进行全面而深入的了解和思考。以下是小编为大家收集的总结范文,希望能给
工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践
总结的目的是总结经验、得出教训以及制定下一步的计划和目标。总结时要做到客观公正,不夸大事实,也不掩饰问题。这里列举了一些写好总结的要点和注意事项,供大家参考和学
在生活中,越来越多人会去使用协议,签订签订协议是最有效的法律依据之一。相信很多朋友都对拟合同感到非常苦恼吧。下面是小编为大家整理的合同范本,仅供参考,大家一起来
总结是一个不断提醒和警醒自己的过程,让我们时刻保持进步和自我要求。如何写一份完美的总结,是一个需要仔细思考的问题。总结是一个不断进化的文体,以下是一些具有创新思
在生活中,越来越多人会去使用协议,签订签订协议是最有效的法律依据之一。那么合同应该怎么制定才合适呢?下面是小编为大家带来的合同优秀范文,希望大家可以喜欢。面料代
总结能够增强我们对自身成长和发展的认知,为未来的进步提供指导。写总结不仅要关注结果,还要注重过程和思考。以下是一些有关总结的范文,希望可以给大家带来一些灵感和启
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结
总结是一种成长和进步的方式,可以帮助我们发现自己的长处和潜力,为未来的发展提供指引。总结内容要客观、准确,突出重点,避免模糊和主观性过强。了解一些好的总结范文可
总结可以帮助我们更好地规划未来,为我们的目标和计划提供方向和指引。在总结中,我们应该尽量用简练清晰的语言表达自己的观点和感受。参考这些总结范文可以帮助我们更好地
总结是一个反思的过程,通过总结可以提高我们的思维能力。结合实际例子和数据,给出具体的事实和证据支持。以下是小编为大家收集的总结范文,仅供参考,希望能给大家一些启
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?以下是
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。总结怎么写才能发挥它最大的作用呢?下面是小
计划有助于我们避免任务重叠和冲突,保证工作的有序进行。要制定一个好的计划,首先需要明确目标和愿景,知道自己想要达到什么。为了更好地规划未来,以下是一些计划范文,
我们在一些事情上受到启发后,应该马上记录下来,写一篇心得体会,这样我们可以养成良好的总结方法。那么我们写心得体会要注意的内容有什么呢?下面我给大家整理了一些心得
总结可以促使我们思考,反思过去的经历和表现,从中找到不足并及时改进。总结要注意结构合理,条理清晰,以便读者能够快速理解和接受。希望大家能够从这些总结范文中获取灵
教案的编写应符合教学大纲和教学要求,确保教学过程合理、有序。在编写教案时要注意教学资源的充分利用和合理安排。教案范例中的评价方式和标准可以为教师提供参考,帮助他
作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。既然教案这么重要,那到底该怎么写一篇优质的教案呢?下面是小编整理的优秀教案范文,
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。怎样写计划才更能起到其作用呢?计划应该怎么制定呢?以下是小编为大
总结是对过去的经验和教训的积累和总结,为未来的发展提供指导。通过总结,我们可以更好地总结出问题的根源并加以改进。下面列举了一些写作总结时常见的错误和应注意的问题
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么制定才合适呢?以下我给大家整理了一些优质的教案范文,希望对大家
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?以下是小编为大家收集的教案范文,仅供参考
古文是指古代汉族文化圈内流传下来的文学作品和篇章。每个人都有自己的激情和梦想,如何实现这些梦想是人生中重要的课题。我们为大家整理了一些写总结的例子,希望对大家写
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总
时间就如同白驹过隙般的流逝,我们的工作与生活又进入新的阶段,为了今后更好的发展,写一份计划,为接下来的学习做准备吧!怎样写计划才更能起到其作用呢?计划应该怎么制
运动是一种锻炼身体、调节心情的方法,我喜欢跑步、游泳等各种运动方式。写作的关键在于准确表达自己的观点和想法,我们需要用简洁明了的语言来表达。在此为大家整理了一些
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀
总结是尽收获的一种方式,它能让我们更加清晰地认识自己的成果。总结应该面面俱到,全面概括一段时间内的工作、学习和成长经历。以下是小编为大家准备的一些总结范文,希望
当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,
在学习和工作生活中,总结是促进个人成长和进步的有效方式。5.在写总结时,应该注重事实性和客观性的表达,尽量避免主观臆断和夸大夸张。总结范文中的观点和见解有时会与
“报告”使用范围很广,按照上级部署或工作计划,每完成一项任务,一般都要向上级写报告,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想等,以
在我们的人生旅途中,总结是一种宝贵的财富,它可以帮助我们更好地成长。怎样记录生活,留住美好的回忆?以下是小编为大家整理的一些美食菜谱和烹饪技巧,希望能给大家带来
总结的目的不仅仅在于总结,更在于给自己一个新的开始。寻求他人的意见和建议,以便在写作过程中及时调整和改进内容。以下是小编为大家整理的一些优秀总结范文,供大家参考
总结能够帮助我们更好地理解事物的规律性,提高我们的认知水平。思考总结的意义和作用,为后续工作做好规划和准备。遇到不懂的问题,可以请教老师或同学,一起解决。驻村第
每天制定一份计划可以帮助我们更好地安排当天的工作和活动。计划制定过程中,我们可以参考和借鉴已有的成功经验和最佳实践。计划的制定并非易事,以下是一些成功人士分享的
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以
心得体会是我们对一个事物或事件的深入思考和感悟。- 写心得体会时可以结合自己的感受和认识,展示个人的思考和理解。以下是小编为大家收集的心得体会范文,供大家参考和
对于工作和学习来说,总结是一种反思和提升的方式,可以指导我们未来的发展方向。鉴于这个问题的重要性,我们需要思考一个更完善的解决方案。掌握一些优秀的总结范文,可以
有计划地行动可以减少冲动和盲目决策的可能性,提高工作的前瞻性和决策的准确性。合理规划时间是一个成功计划的重要步骤。以下是小编为大家收集的计划范文,仅供参考,大家
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。相信许多人会觉得计划很难写?下面是我给大家整理的计划
写总结是一种自我反思的机会,可以促使我们提升自己。总结应当具备批判性思维,对工作和学习中存在的问题进行深入剖析。阅读总结范文可以帮助我们扩展自己的知识面,了解不
不同的问题和目标可能需要不同的方案来解决和实现。方案的效果评估需要根据实际情况和指标进行量化分析。为了帮助大家更好地理解方案的制定和实施,以下是一些具体案例分析
总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。总结怎么写才能发挥它最大的作用呢?下面是小编为大家带来的总结书优秀范
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。什么样的总结才是有效的呢?这里给大家分享一
我们从生活中不断累积的心得体会,可以成为我们成长的宝贵财富。写心得体会的方法和技巧以下是一些不同主题的心得体会范文,涵盖了各个领域和层面的经验总结。读书的心得体
旅行是一种开阔眼界、丰富人生的方式,我喜欢去不同的地方感受不同的风景和文化。总结还要具备可读性,即使对于非相关人员也可以理解和接受我们的总结内容。总结范文中的例
一种特殊的情感体验是指在某种特定的情境下所产生的特殊情感体验。要写一篇完美的总结,首先需要对所总结的内容有充分的了解和把握。以下是小编为大家整理的一些精选总结范
"有了计划,我们可以更好地把握自己的时间,合理安排各项工作和活动。"利用科技工具和方法可以更好地支持计划的制定和执行,提高工作和学习的效果。下面是一些专家对于计
演讲稿是一种通过口头表达方式展示观点、表达思想、传递信息的文本,它具有很高的实用性和说服力。在现代社会中,演讲稿被广泛应用于各个领域,如政治演讲、商务演讲、学术
演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。那么演讲稿怎么写才恰当呢?下面我给大家整理了一些演讲稿模板范文,希望能够帮助到大家。新年演
制定一个周计划可以帮助我们更好地管理时间。一个完美的计划应该具备明确的目标和可行的执行步骤。计划的制定和管理是一个学习和提高的过程,需要不断的实践和总结。护理工
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是小编为大
总结是一种能够提高效率和效果的重要方式。制定一个明确的总结目标是写好总结的关键。这些总结范文将为我们提供一些实用的写作思路和技巧,帮助我们写出更好的总结文稿。一
计划是规划和安排未来一段时间内的目标和行动步骤的过程,它可以帮助我们提前思考和预判,有效提高工作和学习的效率。我想我们需要制定一个详细的计划了吧。那么我们应该如
总结可以帮助我们发现工作中存在的不足和问题,及时采取措施进行改进和提高。怎样提高自己的情商,与人更好相处?总结写作一直以来都是大家所关注的话题,下面这些范文或许
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那关于总结格式是怎样的呢?而个人总结又该怎
通过总结,我们可以发现并挖掘工作中存在的问题,为以后的发展提供借鉴和启示。如何进行有效的时间管理,提高工作和学习的效率,是许多人需要解决的问题。接下来是一些实际
计划可以提醒我们要时刻保持目标的清晰和明确。首先,明确自己的目标和需求,确保计划能够紧密对应自己的期望。如果你对计划的价值和方法还不太清楚,可以参考以下范文,或
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总
偶尔的放松和调整,对于迈向成功是必要的。总结要站在全局的角度思考和概括,避免片面和偏颇。小编整理了一些总结的写作思路和方法,供大家参考借鉴。大学社团发言稿篇一大
通过总结,我们可以更加清晰地认识到自己的优势和不足。怎样培养孩子的创造力和想象力,是家长普遍关心的话题。以下是小编为大家推荐的历史名著,希望能够开阔大家的视野。
a.付费复制
付费获得该文章复制权限
特价:2.99元 10元
微信扫码支付
b.包月复制
付费后30天内不限量复制
特价:6.66元 10元
微信扫码支付
联系客服