忍耐是一种重要的品质,它能够帮助我们克服困难和挑战。写总结时要注意语言的简练和准确。大自然是一本巨大的教科书,我们可以从中学到很多人生智慧。
六年级下册数学圆柱和圆锥汇总篇一
本节课中,学生不仅掌握了圆柱的特征,而且观察、比较、分析、归纳等能力也得到了培养。反思教学过程,我体会如下:
思维过程,整体地感知圆柱的特征。在讨论圆柱的侧面时,设置悬念,先让学生猜一猜圆柱的侧面展开会是什么图形,通过猜测再进行验证,认识到长方形与圆柱侧面积之间的关系。在练习阶段,我设计了针对性练习和发展性练习,在形式,难度,灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后的填空题进一步锻炼了学生对知识的灵活应用能力。
在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。所以在教学中,我注重与学生的生活实际相结合,为发展学生的空间观念和解决实际问题打下了基础。
六年级下册数学圆柱和圆锥汇总篇二
1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识。
教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
:认识圆柱的特征,掌握圆柱侧面积的计算方法。
认识圆柱的侧面。
一、复习旧知。
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)。
二、教学新课。
1.认识圆柱的特征。
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)。
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)。
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的'两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)。
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……。
4.教学侧面积计算。
(1)认识侧面的形状。
六年级下册数学圆柱和圆锥汇总篇三
(1)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的,圆柱的体积是圆锥体积的().
(2)一个圆柱底面半径是1厘米,高是2.5厘米。它的侧面积是()平方厘米。
(3)3、一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是()厘米。
(4)底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的.体积是()立方米,圆锥的体积是()立方米。
(5)一个圆锥体的底面周长是12.56分米,高是6分米,它的体积是()立方分米。
(6)一个圆锥体底面直径和高都是6厘米,它的体积是()立方厘米。
(7)一根长2米的圆木,截成两同样大小的圆柱后,表面积增加48平方厘米,这根圆木原来的体积是()立方厘米。
(8)一个体积为60立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的体积是()立方厘米。
(9)圆柱的底面半径是3厘米,体积是6.28立方厘米,这个圆柱的高是()厘米。
(10)圆锥的底面半径是6厘米,高是20厘米,它的体积是()立方厘米。
六年级下册数学圆柱和圆锥汇总篇四
(1)圆锥的高是。圆锥有()条高。
(2)将一个圆锥沿着它的.高平均切成两半,截面是一个()形。
(3)下图圆锥的高是()cm。
(4)圆柱的侧面展开,得到一个()形,把圆锥的侧面展开,得到一个()。
二、填一填。
1.指出圆锥的“底面”和“高”。
2.圆锥的底面形状是(),侧面是()面。
3.从圆锥的顶点到底面圆心的距离是圆锥的()。
六年级下册数学圆柱和圆锥汇总篇五
“数学是思维的体操”,数学课堂是培养学生思维能力的主阵地。因此,教学中,教师常常把重心放在拓展学生思维的空间上,常常更多地关注解题方法的优劣、解题过程的繁简。计算则通常归于一句话:计算要细心,多练自然准确率就高啦。其实不然,某些计算的难度已经影响了思维的训练及效果,譬如人教版第十二册第二单元的“圆柱、圆锥”。这部分内容素以计算繁杂而成为教学中的一大令人头疼的章节,相信每一位经历过的教师都有同感。
因为已知了这个教学难点,许多教师和我一样,会有意识地对这个难点进行突破,让学生把3.14×1到3.14×9的得数背下来,并指导学生如何运用背的结果。还练习了由3.14×1你还能想到哪些算式的结果,拓宽3.14×1到3.14×9计算结果的运用范围。但在教学圆柱的表面积、体积的计算时,学生还是错误百出。在订正过程中,有些学生因此对正确的列式产生了怀疑,甚至动摇了对学习这部分内容的信心。作为教师,面对这种状况,心里很不是滋味,不免对自己的“教”进行一番审视,有些方面还真需要改进。
一.计算圆柱的侧面积、表面积、体积,圆锥的体积,如果用综合算式计算,算式有时很长,特别是半径或直径未知时。
我以前较注重要求学生用综合算式来解答,这样对列式的正确与否一目了然。事实上这样要求不但增加了学生思维的难度,同时也增加了计算的难度。思维能力上的难度体现在根据公式求圆柱的表面积、体积时,有些条件没有直接告诉,需要先求出中间数。如已知底面直径和高,求圆柱的表面积,这里需要先求出底面周长与半径,再求出侧面积与底面积,最后再求出表面积。教师眼中比较简单的问题,对学生来说由于中间问题多而显得思维难度大,如果我们一开始认识不到,不能降低要求,帮助学生用分步列式的方法计算,无形中增加了学生的难度。教材中的例题就是分步列式,是有良苦用心的。更何况在解决实际问题时,还要考虑问题求的是侧面积、表面积、体积中的哪一种,如果求的是表面积,又应该是由哪些面组成的,是一个底,还是两个底,还是没有底。计算上的难度体现在这么长的一个算式中,如果其中一步列式有差错或一个数据算错,整个算式的结果就会算错。而对待错误,一般的学生特别是后进生很少去对这么长的算式进行整体反思,去改正列式中的一个小错误,或把其中算错的那个数据进行修正,进而用适当微调的方式进行订正,而是全部推倒重算。算的步骤越多,错误的概率就越大,常常越订正错误越多,多次订正得不到正确结论,学生很容易烦燥,并丧失学习的信心。
二、对3.14的处理要掌握巧妙的方法。
一个问题中,3.14通常要重复计算多次,结果多是几位小数。如已知圆柱的底面直径是10厘米,高是15厘米,求圆柱的表面积.算式是10×3.14×15+(10÷2)×3.14×2。3.14要分别乘150与50,最后是两积相加。如果我们把3.14看成,在计算时先不与具体的数字进行计算,到最后统一处理,如上面这一题,如果我们这样算:,最后只要算200与相乘,那么只要乘一次3.14,这样就可以减少与3.14相乘的次数,也就减少了出现错误的可能性。因此,我鼓励学生把带入算式中计算,甚至允许如果题目结果没有提出得数保留的要求,最后的结果可以保留,让学生品尝把带入算式计算的好处。在以后的`练习中,学生的学习效果出现了明显的好转,自信又回到了学生的身上,同时也培养了学生计算的兴趣及能力。
三、关于圆锥的体积计算中三分之一的处理。
圆锥的体积等于与它等底等高的圆柱体积的,计算圆锥的体积有几种公式:,首先看能否与其它数约分,如已知圆锥的底面积是20.5平方厘米,高是6厘米,体积是×20.5×6,可先把与6约分。如已知圆锥的底面半径是9厘米,高是5厘米,体积是×3.14×9×9×5,可先与9约分。若无法约分,就先算出其它各数的积,最后再除以3。这样尽量减少小数计算的次数,降低出错的可能性。
从圆柱、圆锥的表面积、体积的教学,我想到了我们教师如何对待学生计算过程中出现的差错。学生在学习过程中出现差错是很正常的。对待学生的计算错误,教师首先保持一个正确的心态,适当提醒学生是应该的,过分从学生身上查找原因,过分责怪学生不认真、不仔细、习惯不好等等,不但不会对解决问题产生丝毫的帮助,反而会使学生失去数学学习的兴趣。教师应充分吃透教材,准确把握教材的意图,善于观察学生,从学生学的过程寻找适合的教法,找到帮助学生克服学习困难的金钥匙。
六年级下册数学圆柱和圆锥汇总篇六
1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。
2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。
教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。
师:还记得哪些与圆柱圆锥有联系的计算公式?
生:回答相联系的数学公式。
师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?
生:回忆基本知识。
1、抢答练习,请说出你的思考过程。
(1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?
学生抢答,并说出自己的思考过程,教师板书。
2、解决数学问题:
(1) 出示一圆柱图
师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?
竞赛的形式来解决,竞赛要求:
1、时间3分钟。
2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。
(1) 学生独立完成;
(2) 同桌互查;
(3) 学生汇报;
(半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)
(4)如果出现问题下面改正。
最佳设计方案。
有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)
学生活动,老师巡视。小组成员汇报方案。
师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?
师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的.心情及感受。
课前思考:
潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。
因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。
下面补充这样几题:
市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。
1.
(1)这个水池占地多少平方米?
(2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?
(3)这个水池装满水,最多能装多少立方米?
(4)在池口围一圈栏杆,栏杆长多少米?
六年级下册数学圆柱和圆锥汇总篇七
本单元观察物体,动手操作,掌握圆柱和圆锥的特征及它们的组成;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,归纳出圆柱的表面积、体积和圆锥的体积计算公式,并能正确计算;培养学生运用所学知识解决简单的实际问题的能力;初步参透数学的“转化”思想;初步养成乐于思考、勇于质疑、实事求是等良好品质。
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积等内容。
1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
2、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。
3、使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。
圆柱、圆锥体积的计算公式的推导。
7课时。
六年级下册数学圆柱和圆锥汇总篇八
一、填空:
1,把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是()平方厘米。
2,一个圆锥体的底面半径是6厘米,高是1分米,体积是()立方厘米。
3,等底等高的圆柱体和圆锥体的体积比是(),圆柱的体积比圆锥的体积多()%,圆锥的体积比圆柱的体积少()。
4,把一个圆柱体钢坯削成一个最大的圆锥体,要削去1.8立方厘米,未削前圆柱的体积是()立方厘米。
5,一个圆柱体的侧面展开后,正好得到一个边长25.12厘米的正方形,圆柱体的高是()厘米。
6,用一个底面积为94.2平方厘米,高为30厘米的圆锥形容器盛满水,然后把水倒入底面积为31.4平方厘米的圆柱形容器内,水的高为()。
7,等底等高的一个圆柱和一个圆锥,体积的和是72立方分米,圆柱的体积是(),圆锥的体积是()。
8,底面直径和高都是10厘米的圆柱,侧面展开后得到一个()面积是()平方厘米,体积是()立方厘米。
9,把一根长是2米,底面直径是4分米的圆柱形木料锯成4段后,表面积增加了()。
10,底面半径2分米,高9分米的圆锥形容器,容积是()毫升。
11,已知圆柱的底面半径为r,高为h,圆柱的体积的计算公式是()。
12,容器的容积和它的体积比较,容积()体积。
二、判断:
1,圆柱体的体积与圆锥体的体积比是3∶1。()。
2,圆柱体的高扩大2倍,体积就扩大2倍。()。
3,等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积大2倍.()。
4,圆柱体的侧面积等于底面积乘以高。()。
5,圆柱体的底面直径是3厘米,高是9.42厘米,它的侧面展开后是一个正方形。()。
三、选择:(填序号)。
1,圆柱体的底面半径扩大3倍,高不变,体积扩大()。
a、3倍b、9倍c、6倍。
2,把一个棱长4分米的正方体木块削成一个最大的圆柱体,体积是()立方分米。
a、50.24b、100.48c、64。
3,求长方体,正方体,圆柱体的体积共同的`公式是()。
a、v=abhb、v=a3c、v=sh。
a、16b、50.24c、100.48。
5,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()。
a、扩大3倍b、缩小3倍c、扩大6倍d、缩小6倍。
四、应用题:
1,一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。
3,圆柱形无盖铁皮水桶的高与底面直径的比是3∶2,底面直径是4分米。做这样的2只水桶要用铁皮多少平方分米?(得数保留整十平方分米)。