理解古代文学作品需要了解当时的社会背景和文化环境。避免流于表面,应深入挖掘问题的本质和深层次原因。以下是一些经典总结范文,供大家学习。
高中数学函数知识点篇一
教科书和参考书上的例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,可以先把后面的解答内容盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。
一节课与其抓紧时间大汗淋淋地做考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。—道题的价值不在于做对、做会,而在于明白了这题想考查什么。
数学能力的提高离不开做题,但做题不是搞题海战术,要通过一题联想到很多题。着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
高中数学函数知识点篇二
如果我们在数据分析时要用到某个功能,但不知用什么函数才能实现这一操作,我们可以借助excel2002/2003中提供的“搜索函数”功能来实现。假设我们想了解与“贷款”有关的函数,只需单击“插入”菜单中的“函数”命令,弹出“插入函数”对话框,在“搜索函数”框中输入要搜索函数功能的`关键字,单击“转到”按钮就可以看到excel推荐你使用的函数了。
对一些不常用的excel函数,用户在使用时往往容易出现格式输入错误,这时excel2002/2003会人性化地提醒你,从而确保公式输入的正确性。在我们输入公式时,系统会将当前引用的单元格(或单元格区域)用蓝框选中,以便于用户检查输入时有没有引用错误。另外,在套用函数格式时(如“参数”),系统也会在函数的下方用粗体将当前参数标记出来,这样就一目了然了。
即使有了人性化的提醒,在输入公式时也难免会出现一些如“#name?”、“#value!”等错误的提示,用户往往不知道错在哪儿,excel2002/2003中我们会发现,在出错单元格的左侧(或右侧)多出一个带有错误警告提示的“!”号,单击其右侧的下拉按钮,我们就可通过系统帮助知道错在哪儿了。
高中数学函数知识点篇三
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
文档为doc格式。
高中数学函数知识点篇四
1.如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的.定义域为大于0的所有实数;2.如果同时q为奇数,则函数的定义域为不等于0的所有实数。
1.在x大于0时,函数的值域总是大于0的实数。
2.在x小于0时,则只有同时a为奇数,函数的值域为非零的实数。
由于x大于0是对a的任意取值都有意义的,
因此下面给出幂函数在第一象限的各自情况。
高中数学函数知识点篇五
指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
高中数学函数知识点篇六
在解决数学问题时,如果首先确定结果的欲望有一定的形式,其中包含一些未确定的系数,然后根据未确定系数方程组的设定条件,解决这些未确定的系数值或找到这些系数之间的关系未确定系数,从而解决数学问题,这种问题解决方法称为未确定系数的方法。它是中学数学中常用的方法之一。
高中数学函数知识点篇七
每次考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。因此平时注意把错题记下来,做错题笔记包括三个方面:(1)记下错误是什么,最好用红笔划出。(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。纵观数学错误,主要集中在三个方面,有的是分明会做,反而做错了的题;有的是记忆得不准确,理解得不够透彻,应用得不够自如,或者是回答不严密、不完整等等;还有的由于不会答错了或猜的,或者根本没有答,这是无思路、不理解,更谈不上应用的问题。原因找到后就消除遗憾、弄懂似非、力争有为。如果能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。
高中数学函数知识点篇八
课本目录就是了解整本书的粗线。复习数学时应先看目录,了解整体。通过目录可以看到这一章的知识框架,形成知识体系高中物理,粗略回忆每一小节所讲的内容,涉及到哪些概念、公式、定理,以及对它们的理解,通过目录就可自测出自己对这一章的掌握情况如何,以便于有针对性的复习。
数学知识体系中另一条较为具体的线,就是概念和公式。概念和公式是解答所有数学题的依据,同时也是基础,抓住这条线,就可以掌握课本中重点内容。整理细线条的方法有两种:
复习时对照课本,把每一章节中出现的定理或公式,按顺条抄在笔记本上,成为复习的提纲。然后,把这些公式反复背熟记牢。复习的时候,反过来先看笔记本上的定理公式,以公式为纲,对照公式回忆它们的应用,及相关的知识点。;回忆不出来时再回过头去看书。
2、公式推导法。
同样方法把课本中的公式抄下来,然后从头到尾自己进行公式推导,在推导的过程中,如果两道公式之间存在联系,就用线条把这两道公式联结起来,以便一起复习。比如,列出的公式中,公式b应用到公式a作为一个线条,那么就在这两道公式中划线联结,a——b,这样复习起来,知识之间的逻辑关系就一目了然。
以上是小编为大家整理的“如何抓住高中数学的主要脉络”全部内容。
高中数学函数知识点篇九
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
高中数学函数知识点篇十
1、先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2、先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
6、先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
高中数学函数知识点篇十一
俗话说:“好记性不如烂笔头。”的确,上课时把教师讲的概念、公式和解题技巧记下来,把听过或看过的重要信息清晰地保存下来,有利于减轻复习负担,提高学习效率。但在实际学习中,不少同学忙于记笔记,没有处理好听、看、记和思的关系,顾此失彼,从而影响学习效果。这里,笔者仅就同学们在数学笔记中存在的几种误区进行分析,以帮助大家提高记数学笔记的效率。
有的同学习惯于“教师讲,自己记,复习背,考试模仿”的学习,一节课下来,他们的笔记往往记了几页纸,可以说是教材和教师板书的“映射”,成了教学实录。这些同学过分依赖笔记,忽视老师的讲解,忽视思考,以为老师讲的没有听懂不要紧,只要课后认真看笔记就可以了。殊不知,这样做往往会忽视老师的一些精彩分析,使自己对知识的理解肤浅,增加学习负担,学习效率反而降低,易形成恶性循环。一般来讲,在高中数学的学习中,上课要以听讲和思考为主,并简明扼要地把教师讲的思路记下来,课本上叙述详细的地方可以不记或略记。同时,要记下自己的疑问或闪光的思想。如老师讲概念或公式时,主要记知识的发生背景、实例、分析思路、关键的推理步骤、重要结论和注意事项等;对复习讲评课,重点要记解题策略(如审题方法、思路分析、最优解法等)以及典型错误与原因剖析,总结思维过程,揭示解题规律。记笔记时,不要把笔记本记满,要留有余地,以便课后反思、整理,这样既可以提高听课效率,又有利于课后有针对性的复习,从而收到事半功倍的效果。
录,不认真领悟其中蕴含的重要数学思想和方法,是学不好数学的。经验告诉我们,少量典型习题及其解法的确要记在笔记本上,但不能就题论题,而是要把重点放在习题价值的挖掘上,即注意写好解题评注。这就好比安装在高速公路两旁的路标,它们会提醒你何时减速,何时急转弯,何时遇到岔路口等。解题也是如此,易错之处或重要的解题思想,要用简短精炼的词语作为评注,把闪光的智慧用笔头记下来,这对积累经验,提升数学素养大有裨益。隔一段时间后,再把它们拿出来推敲一番,往往会温故知新。总之,笔记应成为自己研究数学的心得,指引学习前进方向的路标。
有些同学的笔记本好比过期期刊,时间一长就弃于一旁,没有发挥它应有的作用,实在可惜。事实上,许多高考优胜者的经验之一就是使自己的笔记成为个人的“学习档案”和最重要的复习资料。因为,好的笔记是课本知识的浓缩、补充和深化,是思维过程的展现与提炼。合理利用笔记可以节省时间,突出重点、提高效率。当然,还要经常对笔记进行阶段性整理和补充,建立有个性的学习资料体系。如可以分类建立“错题集”,整理每次练习和考试中出现的错误,并作剖析;还可以将笔记整理为“妙题巧解”、“方法点评”、“易错题”等类别。只要这样坚持做下去,不断扩大成果,就能克服“盲点”,走出“误区”,到了紧张的综合复习阶段,就会显得轻松、有序,还可以腾出更多的精力和时间,把所学知识系统化、信息化。
古语云:授人以鱼,只供一饭。授人以渔,则终身受用无穷。学知识,更要学方法高中化学。清华网校的学习方法栏目由清华附中名师结合多年教学经验和附中优秀学生学习心得组成,以帮助学生培养良好的学习习惯为目的,使学生在学习中能够事半功倍。
数学是一个人的学习生涯中所占比重最大的学科,也是高考科目中最能够拉开分数层次的学科,因此学好数学,无论是对高考,还是对以后学习工作都起着重要作用。那么高一新生在学习上刚刚踏入新阶段,如何去除初中时养成的不适宜高中学习的习惯,又如何掌握正确的学习方法呢?我们应注意以下三点:
(1)注意和初中数学知识的衔接。这是一个十分困难的问题,初中数学与高中数学的差别非常大,从原本的实际思维转入抽象思维,需要一个大幅度转变。这就需要重新整理初中数学知识,形成良好的知识基础,在此基础上,再根据高中知识特点,较快的吸收新的知识,形成新的知识结构。
(2)认真理解,反复推敲思考高中各知识点的涵义,各种表示方法。容易混淆的知识,仔细辨识、区别,达到熟练掌握,逐步建立与高中数学结构相适应的理论本质与思考方法,切忌急于求成。
(3)通过学习,要努力培养自己观察,比较抽象,概括能力初步形成运用知识准确地表达数学问题和实际问题的意识和能力;培养科学的'、严谨的学习态度,为树立辩证唯物主义科学的世界观认识世界打下基础。
我们应试时,时常发现厌试心理,有时会有些紧张,这是很正常的。但过分紧张也会导致考不好,所以平时应把练习当作考试,但考试时则平视为练习,心态好了,成绩自己就上去了。
如何减少解题失误,这是一个考高分的关键。失误少了,分数就会溅涨。这需要学生的仔细观察与认真阅读题目,抓住题目重点、题心,并围绕重点、题心考虑其他条件与答案。其次,考虑要周全,避免出现遗漏情况,各个方面都要考虑到,这需要平日思考事物的长期积累。
考试考得不好,这是常遇到的问题,心情沮丧是正常心理,但不能持久下去。要将答案听彻底,记下,并与自己的解题思路相比较,发现不同之处,或不要之处并记于心里,这样对于下次考试则很有好处。
高中数学函数知识点篇十二
(1)配方法:若函数为一元二次函数,则可以用这种方法求值域,关键在于正确化成完全平方式。
(2)换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。
(4)不等式法:借助于重要不等式a+bab(a0)求函数的值域。用不等式法求值域时,要注意均值不等式的使用条件“一正,二定,三相等。”
(5)反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a0)型函数的值域,可采用反函数法,也可用分离常数法。
(6)单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p0)的单调性:增区间为(-,-p)的左开右闭区间和(p,+)的左闭右开区间,减区间为(-p,0)和(0,p)。
(7)数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。
注意:
(1)用换元法求值域时,认真分析换元后变量的范围变化;用判别式法求函数值域时,一定要注意自变量x是否属于r。
(2)用不等式法求函数值域时,需要认真分析其等号能否成立;利用单调性求函数值域时,准确找出其单调区间是关键。分段函数的值域应分段分析,再取并集。
(3)不管用哪种方法求函数值域,都一定要先确定其定义域,这是求函数的重要环节。
高中数学函数知识点篇十三
选择、填空题有一个共同特点,就是只要结果不看过程,有的同学用不了一分钟就做出一道题,有的同学五分钟才能完成,速度上的差异将直接反映在高考分数上,因此要重视和加强选择、填空题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择、填空题的经验,尽可能小题小做,除直接法外,选择题还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。这种在速度上的追求同样可以用在解答题上,解题时书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。
高中数学函数知识点篇十四
而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。
很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。
中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。
还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。
翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。
高中数学函数知识点篇十五
因式分解是将多项式转换为几个积分的乘积。因子分解是身份变形的基础,在解决代数,几何和三角问题中起着重要作用。因子分解的方法很多,除了中学教科书上关于公因子法的提取,公式法,分组分解法,交叉乘法法等,还有诸如使用术语加法,根分解等,未确定系数等。
高中数学函数知识点篇十六
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)。
2、性质:(1)在一次函数上的任意一点p(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k0时,直线必通过一、三象限,y随x的增大而增大;
当k0时,直线必通过二、四象限,y随x的增大而减小。
当b0时,直线必通过一、二象限;
当b=0时,直线通过原点。
当b0时,直线必通过三、四象限。
特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。
高中数学函数知识点篇十七
(1).两个偶函数相加所得的和为偶函数。
(2).两个奇函数相加所得的和为奇函数。
(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。
(4).两个偶函数相乘所得的积为偶函数。
(5).两个奇函数相乘所得的积为偶函数。
(6).一个偶函数与一个奇函数相乘所得的积为奇函数。
高中数学函数知识点篇十八
“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。