在改变他人之前,我们首先需要改变自己,这是成长的关键。总结中的重点信息应该如何突出,以便于读者理解?切勿完全照搬范文内容,我们应该根据实际情况进行个性化的总结。
认识因数和倍数教学设计篇一
《倍数》的教学设计01月10日星期一08:00《倍数》的教学设计。
教学内容:冀教版数学四年级上册第七单元,教材第84---85页。
教学目标:
知识与能力。
1.结合具体情境,联系整数乘除法认识倍数。
2.探索找一个数的倍数的方法。
过程与方法。
结合整数除法的知识理解倍数的意义,并经历探索求一个倍数的方法的过程。
情感、态度与价值观。
让学生体验数学与生活的紧密联系,在学习数学的过程中体会学习的乐趣。
教学重点:初步理解倍数的含义,会利用乘除法找一个数的倍数。
教学难点:理解倍数的意义,
教学突破:通过对两组除法算式的比较,引出倍数的意义,并结合意义探索求一个数的倍数的方法,归纳一个数的倍数的特征。
教学过程:
一、小活动:
文字填空:我是(我是(我是(。
《我是(我)》此活动提起学生学习的兴趣,同时引导学生正确认识自己的优点和缺点,树立正确的学习观。
二、谈话提问导入。
1、谈话:自然数、分数、小数。
2、填空:(幻灯片)。
1.14的7倍是,84是12的()倍。
2.小白兔有21个萝卜,小灰兔有7个萝卜,小白兔的萝卜数是小灰兔的()倍。
说一说你是怎么算的`?
板书:倍数。
三、新课。
1、计算、观察算式结果,理解倍数的意义。(幻灯片)。
12÷3=211÷3=。
40÷8=43÷8=。
315÷15=637÷15=。
2、学习判断两个数是否有倍数关系的方法。
判断下面几组数有没有倍数关系,(幻灯片)。
901815639922735127。
课堂小结:一个数除以另一个数得数没有余数,我们就说这个数的另一个数的倍数。
3、学习找出一个数的倍数的方法。
说一说:请说出2、3、5的倍数。(幻灯片)。
课堂总结:
1、我们研究倍数的知识是在非零的自然数范围内的,不考虑分数和小数。
2、一个数的最小倍数是它本身,没有最大的倍数。
3、一个数的倍数的个数是无限的。
练一练:请学生说出1---100范围内7、8、9、10的倍数。(幻灯片)。
板书设计:倍数。
自然数分数小数。
认识因数和倍数教学设计篇二
1.通过观察、比较、操作,沟通几个几和“倍”之间的联系,使学生建立倍的概念,理解“倍”的含义。
2.培养学生的观察、操作和有条理的语言表达能力。
3.在学习过程中让学生体验生活中处处有数学,培养学生动脑思考及主动探索的精神,提高学生学习数学的兴趣。
建立“倍”的概念。
通过观察、操作,理解“倍”的含义。
“倍”概念的建立是在学生掌握一般乘除的知识后进行演化学习的,它是根据乘除知识中“份”的要领扩展而来的。建立“倍”的概念,有助于学生进一步理解乘法和除法的含义,拓展应用乘、除运算解决实际问题的范围,也是学习分数、比例等知识的基础。
一、创设情境,生成问题。
谈话:秋天是收获的季节,果园里的水果都成熟了,小动物们都赶来采摘,看小猴子的收获,你能看清苹果和桃子的具体个数吗。(出示乱摆的水果)。
师:同学们看,桃几个?苹果呢?比比他们的数量,发现什么了?生:苹果比桃多3个,
师:你一下就看出来了,真了不起。我们也可以说桃比苹果少3个。师:以前我们学过用多少比较两个数量,这是一种比较的方法,其实除了比多少,还有一种新的比较方法,就是我们今天要学习的(师板书‘倍’)。
二、探索交流,解决问题。
1.借助实物,认识“倍”。
师:三个桃子圈起来看作1份(教师边说边圈),那苹果有这样的几份?生:2份。
师:桃子是3个,苹果的个数是2个3.我们就可以说苹果的个数是桃子的2倍。
师:我们把三句连起来读一遍。(生读)。
师:我们以什么为标准看作一份生:3个桃子。
2.对比分析,感悟“倍”。
(1)师:小猴子还采摘了一些苹果呢,现在苹果的个数是桃子的几倍?
生:3倍师:是这样吗,拿出探究单,用圈一圈的方法,找出倍数关系指名展示,说说为什么要3个3个圈,突出3个为一份。
(2)师:如果再加上三个苹果呢,现在苹果的个数又是桃子的几倍?
指生说。
(3)师:(生说完后,师把苹果乱放),现在苹果的个数还是桃子的4倍吗。
师总结:倍数关系比的是数量,怎么摆都可以。(4)对比:
师:先独立思考,把你的想法和同桌说说。生:苹果的个数是几个3,就是桃子的几倍。
师:同学们现在认识倍了吗,这就是我们这节课的学习内容,板书(倍的认识)。
三、巩固应用,内化提高。
1.手指游戏,应用概念。
谈话:既然认识了倍,我们来玩个有关倍的小游戏,愿意吗?
听清楚要求,老师出手指,同学们出的手指数必须是我的2倍,先仔细观察,等我说开始的时候,你再伸出手指。
2、错误辨析,理解“倍”
师:(课件出示小猪收获的水果),小猪说的对吗。
生:不对,菠萝应该两个两个圈。
师:2个西瓜看一份,菠萝要2个2个圈,圈出3个2,菠萝的个数就是西瓜的3倍。
3、对比分析,深化“倍”
(1)引思:帮小猪纠正了错误,下面我们看看小狗的问题。
生:没有桔子。
师:这么多的猜想,我们一一来看看。桔子是1个,草莓的个数是桔子的几倍生:12倍。
师:桔子是2个呢,用草莓摆一摆,摆出倍数关系。生:草莓的个数是桔子的6倍。
师:那桔子是3个、4个、6个,结论又是什么样的呢,赶紧动手摆一摆说一说。
师:当我们不能正好摆完的时候,草莓和桔子之间也是存在倍数关系的,这时候我们可以说苹果是梨的2倍多2个。你看用倍比较的范围更大了。
4、有趣的倍数现象。
(1)师:熊猫用它收获的水果也摆了一个,同学们看,苹果的个数是梨的几倍。
生:苹果是梨的3倍。
师:按照三个苹果一个梨的规律再摆了一组,苹果的个数是梨的几倍。生:还是3倍,梨是2个,苹果是6个,所以苹果是梨的3倍。师:再摆一组呢?生:还是3倍。
(2)师:我们再来看一道,红条的长度是黄条的几倍?
生:红条的长度是黄条的3倍。
师:仔细观察(课件依次减少红条的份数),现在红条的长度是黄条的几倍?
减到只剩下如图。
师:现在红条的长度是黄条的几倍呢?生:半倍。
师:这是留给同学们的思考,有兴趣的可以课下探究。
四、回顾整理,反思提升1.方法回顾。
师:同学们我们这节课认识了倍,想一想我们用什么方法找到了倍数关系?
生:摆一摆,圈一圈。
师:首先找到比的标准,再摆一摆,圈一圈,找到有几个这样的份数,就是它的几倍。2.抽象提升。
师:注意观察,老师把黑板上的这些图都拿掉。剩下些什么?生:红圈和绿圈。
师:比比红圈和绿圈的个数,说说他们之间的个数关系。生:红圈的个数是绿圈的4倍。
师总结:比较两种数量之间的关系,既可以用以前学过的比多少的知识,也可以用今天学的比倍的知识来解决,谢谢同学们和老师一起研究倍的知识。
认识因数和倍数教学设计篇三
教学内容:青岛版教材小学数学五年级上册88—91页。
教学目标:
1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。
2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。
教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。
教学难点:探索求一个数因数或倍数的方法。
教具准备:多媒体课件、学生练习题。
教学过程:
一、谈话导入。
师:同学们看这是什么?
生:小正方形。
师:想不想知道王老师给大家带来了多少个这样的小正方形?
生:想。
师:多少个?
生:12个。
师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?
生:能。
认识因数和倍数教学设计篇四
教学内容:新人教版小学数学五年级下册第13~16页。
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。
教学难点:自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。
教学具准备:学号牌数字卡片(也可让学生按要求自己准备)。
教法学法:谈话法、比较法、归纳法。
快乐学习、大胆言问、不怕出错!
课前安排学号:1~40号。
课前故事:说明道理:学习最重要的是快乐,要掌握学习的方法。
教学过程:
一、复习。
问:“我们在因数与倍数的学习中,研究的数都是什么数?”(整数)。
谁能说说10的因数,你是怎么想的?
今天,我和大家一道来继续共同探讨“因数与倍数”
二、合作交流、共探新知。
b、探究找一个数的因数的方法(谈话法、比较法、归纳法)。
1、谁来说说18的因数有哪些?
学生预设:有的学生可能会说还有6*3,9*2,18*1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。
d、介绍写一个数因数的`方法。
可以用一串数字表示;也可以用集合圈的方法表示。
说一说:
18的因数共有几个?
它最小的因数是几?
最大的因数是几?
2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)。
a、30的因数有哪些,你是怎么想的?
b、36的因数有几个?你是怎么想的?为什么6*6=36,这里只写一个因数?
d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?
学生总结:
板书:
一个数最小的因数是1;
最大的因数是它本身;
因数的个数是有限的。
轻松一下:
我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)。
b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)。
因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。
过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。
a、2的倍数有哪些?你是怎么想的?从1开始做手势:1*2=2,2*2=4,2*3=6,一倍一倍地往上递加。
b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好。
c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?
(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)。
学生总结:
认识因数和倍数教学设计篇五
教学过程:。
一,创设情境,明确相互依存的关系。
师:同学们,我们人与人之间存在着各种关系,比如说(指某位同学)他同他的爸爸是什么关系呢?(父子关系)老师和你们是——师生关系。
师:“老师是师生关系”可以这样说吗?为什么?
生:师生关系是指老师和学生之间的相互关系,不能单独说。
师:是呀,人与人之间的关系是相互的,在数学王国里,也有一些存在着相互依存关系的数,这节课我们就来学习。
二、动手操作,感受并认识因数和倍数。
(一)、新课引入:。
1、师:同学们的桌上都放着12个同样大的正方形,请你用这12个正方形拼成一个长方形,注意每排摆几个?摆了几排?用乘法算式表示你的摆法.
2、进行交流:。
师:谁愿意把自己摆长方形的方法和列出的算式讲给大家听?
师:还有其它摆法吗?
还有不同的乘法算式吗?猜一猜,他是怎样摆的?
学生交流几种不同的摆法。随着学生交流屏幕上一一演示。
师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示,千万别小看这些算式,这节课我们就从这些算式中学习两个重要的数学概念”因数和倍数”。(板书课题)。
师:我们以一道乘法算式为例。(屏幕出示)。
4×3=12,。
师:在这个算式中,4、3、12有什么关系呢?
我们一起来读一读:。
因为:4×3=12,。
所以:4是12的因数,3也是12的因数。
12是4的倍数,12也是3的倍数。
师:读读看,能读懂吗?说一说读后你想到了什么?
生:乘法算式中,两个数存在因数和倍数的关系。
师:他的说法正确吗?我们来继续读。
出示:因为:6×2=12,所以——。
因为:1×12=12,所以——。
师:请把书打到12页,齐读最后自然段的注意。
生:注意,为了方便,在研究因数和倍数的时候,我们所说的数指的是的整数(一般不包括0)。
师:现在你们能把存在因数和倍数关系的条件说得更准确些吗?
生:在非0的整数乘法算式中,两个数之间存在因数和倍数关系。
师:谁也来出个乘法算式说一说。(略)。
课件出示:32÷4=8,你能从这个算式中找到因数和倍数吗?
师:我们不仅可以根据乘法算式找因数和倍数,也可以根据除法算式找因数和倍数。二、创设情境,自主探究找因数和倍数的方法.
1、师:我们刚才初步认识了因数和倍数,明白了因数和倍数都表示几个数之间的关系?(两个)。所以,不能单说哪个数是倍数,哪个数是因数。下面我们进一步来研究因数和倍数。
屏幕显示:。
试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁的倍数?
2、3、5、9、18、20。
生:2、3、9、18都是18的因数。
师:18的因数只有这4个吗?
师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。请你选择你喜欢的方式,可以同桌合作,小组合作,也可以独立完成,找出18的所有因数。如果能把怎么找到的方法写在纸上就更好了。
生:写后小组内交流。
学生填写时师巡视搜集作业。
2、交流作业。(略)。
投影仪出示学生的不同作业。交流找因数的方法。
师:出示18的因数有:1、18;2、9;3、6;。
你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?
生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。
师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?
生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……。
师:用乘法和除法找都可以,你们认为用什么方法更容易呢?
生:乘法。
板书:18的因数有:1、2、3、6、9、18。
师:18的因数也可以这样表示。(课件出示集合圈图)。
组织交流:。
通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?
突出要点:有序(从小往大写),一对对找(哪两个整数相乘得这个数),再按从小到大的顺序写出来。
用我们找到的方法,试一个。
课件出示:。
填空:。
24=1×24=2×()=()×()=()×()。
24的因数有:_______________。
再试一个:16的因数有。
师:一个数的因数,我们都是一对一对地找的,为什么16的因数只有5个呢?
生:因为4×4=16,只写一个4就可以了。
师:观察18、16的所有因数,你有什么发现吗?可以从因数的个数,最小的因数和最大的因数三个方面观察。
生:18的因数有6个,最小的是1,最大的是18.
16的因数有5个,最小的是1,最大的是16.
师:谁能把同学们的发现,用数学语言概括起来。先说给小组同学听。
边交流边板书:。
个数最小最大。
倍数。
认识因数和倍数教学设计篇六
(一)知识与技能。
理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。
(二)过程与方法。
通过整数的乘除运算认识因数和倍数的意义,自主探索和总结出求一个数的因数和倍数的方法。
(三)情感态度和价值观。
在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。
二、教学重难点。
教学难点:自主探索有序地找一个数的因数和倍数的方法。
三、教学准备。
教学课件。
教学例1:
1.观察算式的特点,进行分类。
(1)仔细观察算式的特点,你能把这些算式分类吗?
(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)。
第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。
(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。
(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?
(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。
【设计意图】引导学生从“整数的除法算式”中认识因数和倍数的意义,简洁明了,同时为学习因数和倍数的依存关系进行有效铺垫。
(1)独立完成教材第5页“做一做”。
(2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?
【设计意图】引导学生在理解的基础上进行正确表述:因数和倍数是相互依存的,不是单独存在的。我们不能说4是因数,24是倍数,而应该说4是24的因数,24是4的倍数。
4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。
(1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?
课件出示:
乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。
(2)今天学的“倍数”与以前的“倍”又有什么不同呢?
“倍数”是相对于“因数”而言的,只适用于整数;而“倍”适用于小数、分数、整数。
(3)交流汇报。
【设计意图】“一个数的因数和倍数”与学生已学过的乘法算式中的“因数”以及“倍”的概念既有联系又有区别,学生比较容易混淆,这也是学习一个数的“因数”和“倍数”意义的难点。通过观察、对比、交流,引导学生发现一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。
(二)找一个数的因数。
教学例2:
1.探究找18的因数的方法。
(1)18的因数有哪些?你是怎么找的?
(2)交流方法。
预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。
因为18÷1=18,所以1和18是18的因数。
因为18÷2=9,所以2和9是18的因数。
因为18÷3=6,所以3和6是18的因数。
方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。
因为1×18=18,所以1和18是18的因数。
因为2×9=18,所以2和9是18的因数。
因为3×6=18,所以3和6是18的`因数。
2.明确18的因数的表示方法。
(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?
(2)交流方法。
预设:列举法,18的因数有:1,2,3,6,9,18。
图示法(如下图所示)。
3.练习找一个数的因数。
(1)你能找出30的因数有哪些吗?36的因数呢?
(2)怎样找才能不遗漏、不重复地找出一个数的所有因数?
【设计意图】让学生通过自主探索、交流,获得找一个数的因数的不同方法,在练习中体会“一对一对”有序地找一个数的因数,避免遗漏或重复。初步感受一个数的因数的个数是有限的,以及“最大因数、最小因数”的特征。
(三)找一个数的倍数。
教学例3:
1.探究找2的倍数的方法。
(1)2的倍数有哪些?你是怎么找的?
(2)交流方法。
预设:方法一:利用除法算式找2的倍数。
因为2÷2=1,所以2是2的倍数。
因为4÷2=2,所以4是2的倍数。
因为6÷2=3,所以6是2的倍数。……。
方法二:利用乘法算式找2的倍数。
因为2×1=2,所以2是2的倍数。
因为2×2=4,所以4是2的倍数。
因为2×3=6,所以6是2的倍数。……。
(3)2的倍数能写完吗?你能继续找吗?写不完怎么办?
(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、图示法)。
2.练习找一个数的倍数。
你能找出3的倍数有哪些吗?5的倍数呢?
【设计意图】在理解“倍数”的基础上,让学生进一步体会有序思考的必要性。初步感受一个数的倍数的个数是无限的,以及“最小倍数”的特征。
(四)一个数的因数与倍数的特征。
1.从前面找因数和倍数的过程中,你有什么发现?
2.讨论交流。
3.归纳总结。
预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。
(五)巩固练习。
1.课件出示教材第7页练习二第1题。
(1)想一想,怎样找不会遗漏、不会重复?
(2)哪些数既是36的因数,也是60的因数?
【设计意图】通过练习,让学生再次体会“1是所有非零自然数的因数”“一个数最大的因数是它本身”和“一个数的因数的个数是有限的”。同时,渗透两个数的“公因数”的意义。
2.课件出示教材第7页练习二第3题。
(1)学生独立完成,交流答案。
(2)思考:5的倍数有什么特征?
【设计意图】渗透5的倍数的特征。
3.课件出示教材第7页练习二第5题。
(1)学生独立完成,交流答案。
(2)你能改正错误的说法吗?
(六)全课总结,交流收获。
这节课我们学了哪些知识?你有什么收获?
认识因数和倍数教学设计篇七
教材分析:
这部分教材首先以例题的形式介绍因数和倍数的概念,然后在例1和例2中分别介绍了求一个数的因数和倍数的方法,引导学生从本质上理解概念,避免死记硬背,向学生渗透从具体到一般的抽象归纳的思想方法。
了解学生:
学生已经学习了四年的数学,有了四年整数知识的基础,本课利用实物图引出乘法算式,然后引出因数和倍数的含义,培养了学生的抽象概括能力。
教学目标:
1、知识技能:(1)理解和掌握因数、倍数的概念,认识它们之间的联系和区别。(2)学会求一个数的因数或倍数的方法,能够熟练地求出一个数的因数或倍数。(3)知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
2、过程方法:经历因数和倍数的认识以及求一个数的因数或倍数的过程,体验类推、列举和归纳总结等学习方法。
3、情感态度:在学习活动中,感受数学知识之间的内在联系,体验发现知识的乐趣。
教学重点:学会求一个数的因数或倍数的方法。
教学准备:课件、作业纸。
教学过程:
一、创设情境——找朋友。
1、唱一唱:你们听过“找朋友”这首歌吗?谁愿意大声的唱给大家听?(一名学生唱,师评价:老师很喜欢你的声音,你敢于表现自己,老师很愿意和你成为好朋友)。
2、说一说:谁能具体的说一说“谁是谁的好朋友”?(鼓励:老师希望能听到更多人的声音)。
学生完整叙述:“××是李老师的朋友,李老师是××的朋友”。
3、引入新课:同学们说的很好,那能不能说老师是朋友,××是朋友?看来,朋友是相互依存的,一个人不会是朋友。今天我们就来认识数学中的一对朋友“因数和倍数”(板书课题)。
二、探究新知。
1、提出问题:现在有12名同学参加训练,要排成整齐的队伍,可以怎样排?用一个简单的乘法算式表示出排列的方法。
学生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
课件出示相应的图和算式。
2、揭示概念:以2×6=12为例。
边说边板书:()是12的因数,()是12的因数;
12是()的倍数,12是()的倍数。
学生同桌互相说,指名两名同学说。(评价:这么短的时间内,同学们就能准确、完整的表述它们之间的因倍关系,真了不起。)。
突出强调:能不能说12是倍数,2是因数?(学生回答,揭示并板书:相互依存)。
3、强化概念:另外两道乘法算式,你也能像这样准确地写出它们之间的关系吗?分组比赛,在作业纸上完成,看哪个组能完全做对。
学生在作业纸上完成,同时课件出示:(指名两名学生在白板上利用普通笔标注答案)。
将本文的word文档下载到电脑,方便收藏和打印。
认识因数和倍数教学设计篇八
韩娜。
教学目标。
1、在操作中,获得倍的概念和直观体验,结合具体情境理解“标准量”与“被比量”的联系,建立倍的概念。
2、培养学生分析问题能力和语言表达能力。教学难点:
结合具体情境用“把谁看做一份,谁有同样的几份,所以谁就是谁的几倍”这样来描述倍数关系,建立倍的概念。
教具学具:课件,练习纸教法:
演示法,提问法学法:
动手操作,交流,猜测。
一、由“比差”激趣引入。
好,孩子们,我们来看一下大屏幕。孩子们,仔细看大屏幕,告诉老师你看到了什么?(倍的认识)说得真好,他说出了我们今天这节课要学习的内容。我把这个倍写在这里。这是我们今天要学习和研究的内容。
你叫什么名字?这个同学站在这里,你找一个比你矮的。孩子他欺负你,你是不是比他矮?你服气吗?不服气对,找一个比他高的。
三个小朋友站在一起。这个人是谁?这个人比他(高),这个人比他(矮),这个人有没变?为什么你们一会说他高,一会说他矮呢?(一个人比他高,一个人比他矮,所以我们一会说他高,一会说他矮)。
其实这个孩子给我们说出了一个非常朴素的道理。我们中间的人是不是在和不同的人相比较啊?跟不同的人比较当然就有不同的结果。这个道理明白的举手。这个道理都明白了,那我们今天的课就一点问题都没有了。
孩子们,和不同的人相比,以不同的标准,那么就有不同的结果的。板书“比”二新授认识“倍”
1、认识一倍。
孩子们,看过来,几朵黄花?一起说。(3朵)3朵是多还是少呢?(少)那要看他跟谁比对不对?好的,现在仅仅三朵是黄花摆在这里,没有比较,其实不能说多和少。
好的,一样多相等一倍是一个意思。
2、认识两倍,三倍。
现在你们注意看,红花还正好是黄花的一倍吗?那这个时候可以说红花比黄花(多一朵),也叫一倍多一。红花现在比黄花(一倍多二)红花现在比黄花?那这时红花比黄花多一倍对不对?我们可以说红花一共是黄花的?(两倍)。
来,继续。两倍多几?两倍多几?两倍多几?我听到这个时候有人说现在这个时候红花是黄花的?(三倍)你再说一遍,你再说一遍。知道我为什么要他重复三遍吗?其实我之所以要他说三遍,因为他说的很重要。
3用“标准量”与“被比量”的关系描述谁是谁的几倍。
这个时候红花真的是红花的三倍?可能有人还不明白,这是为什么呢?怎么看出来的呢?谁能说明,请上台前来。
孩子,现在红花与黄花相比,红花是黄花的三倍,你怎么看出来的,你跟大家解释一下,面向大家。红花的数量是几?,黄花呢?9除以3等于3,9里面有3个3,当然红花就是黄花的三倍。
除了像刚才这位同学这样解释以外,9里面有3个3,所以说红花是黄花的3倍,三倍关系还可以换个解释,让别人一听就明白。(圈起来)黄花三多圈一圈,红花三朵圈一圈,数一数红花有几个圈,就是黄花的几倍。
他不仅解释了,而且解释得非常清(楚)。不过要想非常清楚的话,他好像还少圈了一个圈。(生圈三朵黄花)你再完整地说一遍。
我们刚才这位同学不仅解释清楚了,还做了图示。我们刚才这位专家是把黄花看作一份,请问红花有这样的几份,所以红花就是黄花的几倍。
好,孩子们,继续想,如果这里再有3朵红花,黄花1份,红花有这样的几份?所以说红花应该是黄花的(4倍)。
你们太会学习了,这么深刻的道理都明白了,我们要感谢刚才这两位同学。
二、即时练习,加深理解。
2、描述多种形式下的倍数关系。
这个道理都清楚了?来看看,此刻红花是黄花的?(3倍)那老师又来一组,现在红花一共是黄花的几倍?(3倍)老师又来一组,现在红花一共是黄花的几倍?(3倍)那如果我继续像这样下去,红花永远是黄花的?(3倍)。
这样看可能有的小朋友会产生疑惑,那仔细观察,老师变个魔术。
下面把什么花看做一份?那红花有相应的这样的几份?那红花一定是黄花的?
3、渗透简单的“求一个数的几倍是多少”,已知一个数的几倍是多少,求另一个数’’的问题。
那我反过来,这个白线段如果是30,绿线段是多少?这个超越你们的水平了。
4、猜测绿线段是黄线段的几倍。
5、渗透求一个数的所有因数的思想,理解“比”的标准不同倍数就不同。孩子们,既然你们如此的聪明,老师这还有一个小问题要你们帮忙。
他说有三倍的可能,是不是这种情况?这是我们把黄花看作?红花有这样的几份?红花就是黄花的(3倍)。
他还说有两倍的可能,是不是这种情况?这个时候把黄花看作一份,红花有这样的几份,红花就是黄花的(2倍)。
虽然红花没变,但黄花变了,比较的标准在变,红花一开始跟一朵黄花比,又跟两朵黄花比,又跟三多黄花比,又跟6朵黄花比。跟不同的标准比,当然这个倍数会发生变化。太棒了,这么深刻的道理都明白,看来老师今天难不倒你们。
三、动手操作,拓展练习。
几朵黄花?(12)现在看,黄花这里边有倍数吗?黄花是谁的几倍?没有人和它比,没有倍。那要是没人跟他比,那我跟自己比好不好呢?12朵是12朵的几倍?(一样多吗,一倍)。
没人跟他比好像很难过,那我们做做游戏。
我现在变成这个样子。现在有几朵红花?(1朵红花)黄花呢?现在什么花是什么花的几倍?(11倍)张嘴就来。
(3朵红花)我现在又翻一朵,第二幅图,圈一圈,什么花是什么花的几倍?
(5朵红花)好的,孩子们,我再翻一朵,这个时候黄花和红花比,还有没有倍数关系?说没有的也对,说有的也对,说没有是没有整数倍。但倍数关系同样存在。来圈圈看,最后一幅图,这个时候该怎么说?不够两倍,1倍多2.(6朵红花)想象一下,再翻一个什么效果?反过来也同样成立。
(8朵红花)再来,一起说吧,红花是黄花的两倍。那这个时候黄花非要和红花比,黄花是红花的够一倍吗?那这个时候该怎么表达呢、你们以后就知道了。
孩子们有没有感觉,我们今天学的倍如果没有比较有倍吗?
四、总结验收。
你们今天表现的很好,我请你们个自己鼓掌是他的三倍,你们告诉我要鼓几下?那鼓掌吧。
okok,这个鼓掌意思我们同学今天每个人都很棒,谢谢各位!
认识因数和倍数教学设计篇九
教学目标:
1、理解和掌握因数和倍数的概念,认识他们之间的联系和区别。
2、学会求一个数的因数或倍数的方法,能够熟练的求出一个数的因数或倍数。
3、知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
教学准备:
课件。
教学过程:
一、创设情境,引入新课。
师:我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。是啊,人与人之间的关系是相互的。再比如:我们班的曹雪飞与贺正博之间是同桌关系,他们之间的关系是相互依存的,不能单独存在,我们可以说曹雪飞是贺正博的同桌,或者说贺正博是曹雪飞的同桌,而不能说曹雪飞是同桌!在数学王国里,在整数乘法中也存在着这样相互依存的关系,这节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)。
(设计意图:先让学生体会关系,再通过同桌关系让学生体会相互依存,不能独立存在,进而为因数与倍数的相互依存关系打下基础。)。
二、探究新知。
(一)1、出示主题图,仔细观察,你得到了哪些数学信息?
学生说:图上有两行飞机,每行六架,一共有12架。(注意培养学生提取数学信息的能力和语言表达能力,即:数学语言要求简练严谨)。
教师:你们能够用乘法算式表示出来吗?
学生说出算式,教师板书:2×6=12。
2.出示:因为2×6=12。
所以2是12的因数,6也是12的因数;。
12是2的倍数,12也是6的倍数。
(注:由乘法算式理解因数和倍数相互依存,不能独立存在。)。
3.教师出示图2:师:根据图上的内容,可以写出怎样的算式?
3×4=12。
从这道算式中,你知道谁是谁的因数?谁是谁的倍数吗?(让学生自己说一说,进而加深因数倍数关系的认识。)。
教师小结:因数和倍数是相互依存的,为了方便,我们在研究因数与倍数时,我们所说的数是整数,一般不包括0.
4、师:谁来说一道乘法算式考考大家。
(指名生说一说)。
5、让其他学生来说一说谁是谁的因数谁是谁的倍数。
(注:可以让几位学生互相说一说。)。
6、看来都难不住你们,那老师来考考你们:18÷3=6在这道算式中,谁来说说谁是谁的因数谁是谁的倍数。
(设计意图:18÷3=6是为了培养学生思维的逆向性)。
(二)找因数:
出示例1:18的因数有哪几个?
注意:请同学们四人以小组讨论,在找18的因数中如何做到不重复,不遗漏。
学生尝试完成:汇报。
(18的因数有:1,2,3,6,9,18)。
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36。
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)。
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。
师:18和36的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
请同学们观察一个数的因数有什么特点。
在教师引导下,学生总结出:任何一个数的因数,最小的一定是(),而最大的一定是(),因数的个数是有限的。
(设计意图:培养学生探索、归纳、总结、概括的能力。)。
3、其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。
1、2、3、6、9、18。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(三)找倍数:
1、我们学会找一个数的因数了,那如何找一个数的倍数呢?2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……。
师:为什么找不完?
你是怎么找到这些倍数的?
(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍数最小是几?最大的你能找到吗?
2、再找3和5的倍数。
3的倍数有:3,6,9,12,……。
你是怎么找的?(用3分别乘以1,2,3,……倍)。
5的倍数有:5,10,15,20,……。
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?让学生观察2、3、5的倍数,说一说一个数的倍数有什么特点。
学生试着总结:一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
三、课堂小结:
通过今天这节课的学习,你有什么收获?
学生汇报这节课的学习所得。
四、拓展延伸。
2、教材第15页练习二第1题。组织学生独立完成,然后在小组中互相交流检查。
认识因数和倍数教学设计篇十
知识与技能:使学生结合具体情境初步理解因数和倍数的含义,初步理解因数和倍数相互依存的关系。
过程与方法:使学生依据因数和倍数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数的因数和倍数的方法。
情感与态度:使学生在认识因数和倍数以及找一个数的因数和倍数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
理解因数和倍数的含义。
探索并掌握找一个数的因数和倍数的方法。
1、操作:用这12个正方形拼成一个长方形,每排摆几个,摆了几排,摆完后在练习本上写出乘法算式。
汇报:你是怎么摆?算式是什么?
指名说,师板书:1×12=12、2×6=12、3×4=12。
师:刚才通过摆不同的长方形,我们得到了3道不同的乘法算式,别小看这3个算式,其实在这里面有许多数学奥秘。今天我们就来研究数学的新奥秘。
师指3×4=12说:因为3×4=12,所以我们就说3是12的因数(板书:因数),4是12的因数;12是3的倍数(板书:倍数);12是4的倍数。
小结:是呀,我们不能直接说谁是因数,谁是倍数,而要清楚的表达出来谁是谁的因数,谁是谁的倍数。看来,因数和倍数是相互依存的(板书:和)。为了方便,在研究因数和倍数时,一般不讨论0。
二、探索找一个数的因数的方法。
1、师:看黑板上的3个算式,你能找到12的所有的因数吗?(学生齐说。)。
问:如果没有算式,你能找出24所有的因数吗?先想想怎样找?然后写在练习本上。
学生写一写,师巡视。
汇报展示:(2人)。
问:你是怎么找的?(学生说方法)。
评价:他找的怎么样?(学生评一评)。
小结:其实老师就是按从小到大的顺序一对一对找的,这样就能做到既不重复又不遗漏了。看来,有序的思考问题对我们的帮助确实很大。
2、练习。
师:用这种方法写出18的因数。
汇报:你找的18的因数都有哪些?(指名说,师板书)。
3、发现规律。
问:仔细观察这几个数的因数,你能发现什么规律?
小结:一个数的因数最小的是1,最大的是它本身。
三、探索找一个数的倍数的方法。
1、方法。
学生找3的倍数,写在练习本上。
汇报:指名说,师写在黑板上。(3的倍数有:3,6,9,12,15……)。
问:你能说的完吗?写不完怎么办?(用省略号)。
你是怎么找的?
评一评:他的方法怎么样?
问:还有别的方法吗?
问:怎么找一个数的倍数?
指名说。
师:按从小到大的顺序,用3依次去乘1、2、3、4……,乘得的积就是3的倍数。
2、练习。
找出5的倍数,写在练习本上。
指名说,师板书,问:你是用什么方法找的5的倍数?
3、发现规律。
问:观察一下,你发现一个数的倍数有什么特点?
师小结:一个数的倍数的个数是无限的,最小的是它本身,没有最大的。
问:一个数的倍数个数是无限的,一个数的因数的个数呢?(有限)。
(课件出示)。
四、巩固练习。
1、写一写:6的因数、9的因数、50以内7的倍数。
集体订正。
2、选一选。
8的倍数有哪些?48的因数又有哪些?
3、数学小知识:完美数。
师:6的因数有(1,2,3,6),把前三个因数相加,你会发现什么?(1+2+3=6)。
认识因数和倍数教学设计篇十一
2.2、5、3的倍数的特征。
3.质数和合数。
二、教学目标。
1.掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
三、编排特点。
1.精简概念,减轻学生记忆负担。
(1)不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
(2)不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
(3)公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2.注意体现数学的抽象性。
数学知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
2.要注意培养学生的抽象思维能力。
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12。
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)。
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。
齐读p12的注意。
二、新授:
(一)找因数:
1、出示例1:18的因数有哪几个?
学生尝试完成:汇报。
(18的因数有:1,2,3,6,9,18)。
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36。
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)。
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。
1、2、3、6、9、18。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……。
师:为什么找不完?
你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12。
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……。
你是怎么找的?(用3分别乘以1,2,3,……倍)。
5的倍数有:5,10,15,20,……。
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。
2的倍数3的倍数5的倍数。
2、4、6、8……3、6、9……5、10、15……。
将本文的word文档下载到电脑,方便收藏和打印。
认识因数和倍数教学设计篇十二
()是()的倍数。()是()的倍数;
(评价:哪个组的同学都做对了,真是好样的!)。
4、明确范围:打开书12页明确因数倍数的范围。
学生齐读:为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。
师板书:整数、不包括“0”。
三、找一个数的因数。
1、师:通过这些乘法算式,我们找到了12的一些因数,谁能说一说12的因数有哪些?
学生说出,12的因数有6,2,4,3,1,12。
2、师:找完了吗?怎样就能不重复、不遗漏,找到所有的因数?
学生可能说出:依据乘法算式,有序的找。(评价:有序的思考是我们数学中一种很重要的思维方式,这位同学很了不起,你们学会了吗?谁还能再说一说这种方法)。
认识因数和倍数教学设计篇十三
本单元是在学生学过整数的认识、整数的四则计算、小数、分数的认识等知识的基础上展开教学的。本单元的内容主要包括因数和倍数,2、5、3的倍数的特征,质数和合数等知识。通过这部分内容的学习,既可以让学生在前面所学的整数知识基础上进一步探索整数的性质,又有助于发展他们的抽象思维。这些知识的学习是以后学生学习公倍数与公因数、约分、通分、分数四则运算等知识的重要基础。
学生已经学过整数的认识、整数的四则计算、小数、分数的认识等知识,但本单元的知识属于“数论”的初步知识,概念比较多,有些概念比较抽象,概念的前后联系又很紧密,部分学生学习时可能会有一定的困难。教材明确规定在研究因数与倍数时,限制在不包括0的自然数范围内研究,避免由此带来一些小学生尚不必研究的问题。教学时要注意以下两点:
学情分析。
1.利用乘法引导学生认识因数和倍数。教材在揭示倍数和因数的概念时,没有像原来的教材那样,先揭示整除的概念,再利用整除认识倍数和因数,而是让学生通过分类,用除法算式认识倍数和因数。在找一个数的倍数时,也是让学生运用乘除法的知识,探索找一个数的倍数的方法。
2.注重引导学生在数学活动中探索数的特征。教材非常强调学生的数学学习活动,倡导多样化的学习方式,组织学生在活动中探索、发现数的特征。如在探索2、5和3的倍数的特征时,都是先让学生在100以内数的表格中圈出2、5的倍数,再通过分析归纳或猜想验证等方法发现它们的倍数的特征。
教学目标。
知识技能:
1.使学生掌握因数、倍数、质数、合数等概念,知道相关概念之间的联系和区别。
2.让学生通过自主探索,掌握2、5、3的倍数的特征。
数学思考:逐步培养学生的数学抽象能力,以及渗透分类的思想。
问题解决:经历与他人合作交流解决问题的过程,尝试解释自己的思考过程。
情感态度:通过利用因数和倍数的相关知识来解决相应的实际问题,使学生进一步体会数学的应用价值。
课时划分:8课时。
1.因数和倍数……………………2课时。
2.2、5、3的倍数的特征………2课时。
3.质数和合数……………………3课时。
4.整理和复习……………………3课时。
认识因数和倍数教学设计篇十四
教学内容:新人教版小学数学五年级下册第13~16页。
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。
教学难点:自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。
教学具准备:学号牌数字卡片(也可让学生按要求自己准备)。
教法学法:谈话法、比较法、归纳法。
快乐学习、大胆言问、不怕出错!
课前安排学号:1~40号。
课前故事:说明道理:学习最重要的是快乐,要掌握学习的方法。
教学过程:
一、复习。
问:“我们在因数与倍数的学习中,研究的数都是什么数?”(整数)。
谁能说说10的因数,你是怎么想的?
今天,我和大家一道来继续共同探讨“因数与倍数”
二、合作交流、共探新知。
b、探究找一个数的因数的方法(谈话法、比较法、归纳法)。
1、谁来说说18的因数有哪些?
学生预设:有的学生可能会说还有6*3,9*2,18*1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。
d、介绍写一个数因数的方法。
可以用一串数字表示;也可以用集合圈的方法表示。
说一说:
18的因数共有几个?
它最小的因数是几?
最大的因数是几?
2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)。
a、30的因数有哪些,你是怎么想的?
b、36的因数有几个?你是怎么想的?为什么6*6=36,这里只写一个因数?
d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?
学生总结:
板书:
一个数最小的因数是1;
最大的因数是它本身;
轻松一下:
我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)。
b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)。
因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。
过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。
a、2的倍数有哪些?你是怎么想的?从1开始做手势:1*2=2,2*2=4,2*3=6,一倍一倍地往上递加。
b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好。
c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?
(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)。
学生总结:
板书:
一个数最小的倍数是它本身;
没有最大的倍数;
倍数的个数是无限的。
(哦,大家这么聪明啊,不用老师教都会了,看来你们真的是太棒了,这也说明学习要学得轻松就一定要掌握~~方法!)。
c、看样子大家都满怀信心了,那老师就用黑板上的两个例题来考考大家,看大家的观察能力是不是真的好厉害。
你能从中找出既是18的因数又是2的倍数的数吗?(计时开始:10,9,8,~~~)。
学生完成后表扬:哇,好厉害!
三、深化练习,巩固新知。
1、做练习二的第3题。
在题中出示的数字里分别找出8的倍数和9的倍数。
注意“公倍数”概念的初步渗透。
3、做练习二的第6题。
四、通过这堂课的学习,你有什么收获?
五、布置作业:
六、结束全课:
请学号是2的倍数的同学起立,你们先离场,
不是2的倍数的同学后离场。
18=1×18。
18=2×9。
18=3×6。
认识因数和倍数教学设计篇十五
教学内容:青岛版教材小学数学五年级上册88—91页。
教学目标:
1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。
2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。
教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。
教学难点:探索求一个数因数或倍数的方法。
教具准备:多媒体课件、学生练习题。
教学过程:
一、谈话导入。
师:同学们看这是什么?
生:小正方形。
师:想不想知道王老师给大家带来了多少个这样的小正方形?
生:想。
师:多少个?
生:12个。
师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?
生:能。
【设计意图】:以学生熟悉情景引入,激发学生的好奇心。
二、教学因数和倍数的意义。
师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?
生:好!
学生汇报:
生1:1×12=12。
师:他是怎么摆的?
生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。
课件出示摆法。
师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)。
生2:2×6=12。
师:猜一猜他是在怎么摆的?
生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。
师:这两种情况,我们也算一种。
生3:3×4=12。
师:他又是怎么摆的?
生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。
师:还有其他摆法吗?
生:没有了。
师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)。
2.教学“因数和倍数”的意义。
师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。
学生汇报:任选一道回答。
生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。
师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。
师:还有一道算式,谁来说一说?
生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。
师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。
师:通过刚才的练习,你有没有发现12的因数一共有哪些?(生边说老师边有序的用课件出示12的所有的因数。)。
师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。
3、5、18、20、36。
【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。
三、教学寻找因数的方法。
1、找一个数的因数。
师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?
生:有。
师:老师提个要求:
1)、可以独立完成,也可以同桌交流。
2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。
2、探索交流找一个数的因数的方法。
找一名有代表性的作业板书在黑板上。
师:他找对了吗?
生:没有,漏下了一对。
师:为什么会漏掉?仅仅是因为粗心吗?
生:不是,他没有按照一定的顺序找!
师:那么要找到36所有的因数关键是什么?
生:有序。
师生共同边说边有序的把36的所有的因数板书出来。师:还有问题吗?
生:没有了。
生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?
生:再接着找就重复了。
师:那么找到什么时候就不找了?
生:找到重复了,就不在往下找了。
师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。
师:有失误的学生对自己的错误进行调整。
3、巩固练习。
找出下面各数的因数。
4、寻找一个数的因数的特点。
【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。
四、教学寻找倍数的方法。
1、找一个数的倍数。
生:能!
师:试试看,找个小的可以吗?
生:行!
师:找一下3的倍数。30秒时间,把答案写在练习纸上。??
师:有什么问题吗?
生:老师,写不完。
师:为什么写不完?
生:有很多个!
师:那怎么才能全都表示出来呢?
生:可以加省略号。
师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?
师:谁能总结一下你是怎样找到的?
生:从小到大依次乘自然数。
师:你真会思考!
课件出示3的倍数。
2、找5、7的倍数。
师:我们再来练习找一下5的倍数。
生:5的倍数有:5、10、15、20、25??
生:7的倍数有:7、14、21、28、35??
师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?
生:能!
学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。
四、知识拓展。
认识“完美数”。
师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。
小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。
【设计意图】丰富学生的知识,陶冶学生的情操。
教学反思:
找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。
认识因数和倍数教学设计篇十六
师:在写12的因数时,我们可以一对一对的写,(课件出示:1、12、2、6、3、4.)也可以从两头开始写(板书:1、2、3、4、6、12.)找全了画一个句号。
3、过渡:12的因数我们已经会找了,那么你能用学到的知识找到18的因数吗?试一试,看谁能挑战成功!
学生尝试,独立在本上完成。
教师巡视,找出几个问题学生和完全写对的学生的作业,在视频台上展示。
学生说如何找全的方法,强化“有序”“一对一对的找”。
板书:18的因数有:1,2,3,6,9,18。
集合图的形式表示。(课件出示)。
4、及时反馈:写自己学号的因数。
学生在学号纸上独立完成,指名板演2的因数,24的因数,25的因数,1的因数。
做完的同学,互相检查纠错。
师:谁刚才帮别人找到错误了?(评价:你已经熟练的掌握了找因数的方法,真棒!还有谁是最棒的?祝贺你们)。
学生说出“24”和“25”的最小因数和最大因数各是多少。
通过找这些数的因数,从中你发现了什么?学生回答:一个数的最小因数是1,最大因数是它本身。
其他同学根据发现的规律自己检验,并用彩笔圈起来。
小结:虽然一个数,它因数的个数有多有少,但最小的因数是1,最大因数是它本身。1的因数只有1。因为一个数的因数有最大和最小,所以个数是有限的。(板书在表格里)。
四、找一个数的倍数。
1、过渡:我们已经学会了找一个数的因数,那么怎样找一个数的倍数呢?你能像找一个数的因数那样有序的找吗?相信这个问题也一定难不倒大家,咱们先来试一个简单的,找2的倍数,看你能找多少个。
2、学生独立找,找好后在小组中交流。
3、汇报展示,交流方法。
引导:你能按从小到大的顺序找2的倍数吗?能写得完吗?怎么办?
明确方法:用2分别乘1、2、3、4……得到的积都是2的倍数。
4、表示方法:2的倍数有2,4,6,8,10,…(一般写完前5个,就可以用省略号表示);集合图。
5、写出自己学号的倍数。
学生独立完成,指名两生板演(3的倍数,5的倍数,1的倍数),纠正错误。
小组合作:在找一个数的倍数时,你有什么发现?
交流汇报:一个数的最小倍数是它本身,没有最大的倍数,个数是无限的。
认识因数和倍数教学设计篇十七
教材分析:
这部分教材首先以例题的形式介绍因数和倍数的概念,然后在例1和例2中分别介绍了求一个数的因数和倍数的方法,引导学生从本质上理解概念,避免死记硬背,向学生渗透从具体到一般的抽象归纳的思想方法。
了解学生:
学生已经学习了四年的数学,有了四年整数知识的基础,本课利用实物图引出乘法算式,然后引出因数和倍数的含义,培养了学生的抽象概括能力。
教学目标:
1、知识技能:(1)理解和掌握因数、倍数的概念,认识它们之间的联系和区别。(2)学会求一个数的因数或倍数的方法,能够熟练地求出一个数的因数或倍数。(3)知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
2、过程方法:经历因数和倍数的认识以及求一个数的因数或倍数的过程,体验类推、列举和归纳总结等学习方法。
3、情感态度:在学习活动中,感受数学知识之间的内在联系,体验发现知识的乐趣。
教学重点:学会求一个数的因数或倍数的方法。
教学难点:理解和掌握因数和倍数的概念。
教学准备:课件、作业纸。
教学过程:
一、创设情境——找朋友。
1、唱一唱:你们听过“找朋友”这首歌吗?谁愿意大声的唱给大家听?(一名学生唱,师评价:老师很喜欢你的声音,你敢于表现自己,老师很愿意和你成为好朋友)。
2、说一说:谁能具体的说一说“谁是谁的好朋友”?(鼓励:老师希望能听到更多人的声音)。
学生完整叙述:“××是李老师的朋友,李老师是××的朋友”。
3、引入新课:同学们说的很好,那能不能说老师是朋友,××是朋友?看来,朋友是相互依存的,一个人不会是朋友。今天我们就来认识数学中的一对朋友“因数和倍数”(板书课题)。
二、探究新知。
1、提出问题:现在有12名同学参加训练,要排成整齐的队伍,可以怎样排?用一个简单的乘法算式表示出排列的方法。
学生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
课件出示相应的图和算式。
2、揭示概念:以2×6=12为例。
边说边板书:()是12的因数,()是12的因数;
12是()的倍数,12是()的倍数。
学生同桌互相说,指名两名同学说。(评价:这么短的时间内,同学们就能准确、完整的表述它们之间的因倍关系,真了不起。)。
突出强调:能不能说12是倍数,2是因数?(学生回答,揭示并板书:相互依存)。
3、强化概念:另外两道乘法算式,你也能像这样准确地写出它们之间的关系吗?分组比赛,在作业纸上完成,看哪个组能完全做对。
学生在作业纸上完成,同时课件出示:(指名两名学生在白板上利用普通笔标注答案)。
认识因数和倍数教学设计篇十八
教学过程:
生:1×12。
师:猜猜看,他每排摆了几个,摆了几排?
生:12个,摆了一排。
生:三四十二。
生齐:2×6。
师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。
师:还有不同的想法吗?每排能摆5个吗?12个同样大小的正方形能摆3种不同的乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。咱们就以第一道乘法算式为例,3×4=12,数学上把3是12的因数,以往我们把他叫约数,现在叫因数,3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的因数和倍数。
师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行?
师:谁先来?
生说略。
师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊?
生:12是12的因数,12是12的倍数。
生:自然数。
师:而且谁得除外。
生:0。
师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。
3、5、18、20、36。
生说略。
二、探索找因数倍数的方法。
生1:3、18。
师:还有谁?
生2:36。
师:3、18、36都是36的因数,只有这3个吗?
生1:1。
生2:4。
生3:6。
师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?张老师作一下详细说明,因为这个问题有点难度,你可以独立完成也可以同桌完成,下面你选择你喜欢的方式,可以合作,也可以单干,想一想怎么不遗漏,注意了,当你找出了36的所有因数,别忘了填在作业纸上,如果能把怎么找到的方法写在下面更好。
学生填写时师巡视搜集作业。
师:张老师找到了3份不同的作业,大家仔细观察这三份作业,可有意思了。我把他命名为a、b、c师板书。
a:2、4、13、12、18、36。
b:1、2、4、3、6、9、12、18、36。
c:1、36、2、18、3、12、4、9、6。
师:关于a这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方?(学生沉默)一点都没有我们值得肯定的地方吗?你先来。
生1:都对的。
师:有没有道理?看来要找一个人的优点挺困难的。
生2:写全了。
生大声说:没有!
生:没有写全,少了3、6、9。
生:36÷4,只写了4,没写9。
师:他的意思是说用除法来做的话,找一个数的因数,一个个找,还是两个两个找?
生齐:两个两个找。
生2:先把1写在头,36写在尾,然后再把2写中间,这样依次写下去,这样比较美观。
师:张老师提炼出两个字:“顺序”,好象还不仅仅是因为粗心的问题,没有按照一定的顺序。
师:第二个同学有没有找全,有没有更好的建议送给他。
生:他应该把4、3调换一下。
师:你想提出抗议吗?你们觉得有顺序吗?(有)你自己来说?
生:他们那样还要头对尾头对尾的,像这样直接就可以写了。
师:有没有听明白,也是同样一对一对出现的。
生:大小没有排,b大小排完后从小到大很舒服。
师:你看你那个舒服吗?
生:舒服。
师:正是因为你的质疑,他把方法说了出来。他用了什么?
生:乘法口诀。
师:非常感谢同学们给出的发言,正是你们的发言让我们感受到了如何寻找一个数的因数,有没有问题。
生1:找到开始重复就不找了。
生2:我认为应该找到比较接近如5、6,7、8找到比较接近就可以了。
师:体会体会1、学生:36、2、学生:18、3、12、4、9、6这两个因数在不断接近,接近到相差无几。
生:
生:直接找更大数的所有的因数,这个同学很厉害,已经在用分解质因数的方法在找一个因数的个数了。
师:通过刚才的交流,有办法了吗?有没有方法不遗漏。试一个。20。
生齐:1、2、4、5、10、20。
再试一个:15,写在练习纸上。学生汇报。
师:寻找一个数掌握的不错,这节课还要研究倍数呢。会找一书的倍数吗?找一个小一点的,3的倍数,谁来找一个。
生:21、300。
师:你能把3的倍数全部写下来吗?
生:不能。太多太多了。
师:那怎么办?写不完可以用省略号表示。试试看。
学生练习纸上完成,汇报。
师:同学们虽然找的答案差不多,但脑子里的方法各不相同。我想听听你是怎样找的?
生1:3×1、3×2。
认识因数和倍数教学设计篇十九
在学习本单元之前,学生已经较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。这节课将引领学生从一个新的角度(即倍数和因数的角度)来研究非零自然数的特征及其相互关系,为学生进一步学习数的分类、公倍数和公因数以及分数的约分、通分等奠定基础。
1.让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。
1、从学生熟悉的生活入手。首先和学生交流生活中人与人的关系,自然过渡到自然数中数与数之间的关系。并由猜老师的年龄,引入倍数的概念以及找一个数倍数的方法。
2、从学生的操作入手。由浅入深,由无序到有序,通过让学生用不同个数的正方形拼成长方形,引入因数的概念,引导学生将数和形有机结合起来,从而有序地找出一个数的所有因数。
一、课前谈话。
1、话家常,拉“关系”
是的,在我们生活中人与人之间总会存在着这样那样的关系,而在数字的世界里,数和数之间也会存在各种各样的关系。今天这节课,我们就和大家一起研究两个非零自然数之间的关系。
二、学习倍数的意义。
你们为什么异口同声地说我36岁呢?难道只有36是9的倍数吗?
2、按顺序,找倍数。
9的倍数除了36还有什么数吗?能写完吗?为什么?
指出:1倍、2倍往下写,通常只要写出5个,然后用“„„”表示。你能直接写出2的倍数和5的倍数吗?学生独立书写。
指名回答,板书:2的倍数有2、4、6、8、10、12„„。
5的倍数有5、10、15、20、25、30„„提问:观察上面的三个例子,你有什么发现?在小组内讨论。
指名汇报,相机出示以下结论:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。
三、学习因数的意义。
1、初摆图形,感知“因数”屏幕出示12个同样大小的正方形。
根据3х4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。
同学们一起来读一读,感受一下。
请你从1х12=12;2х6=12这两道算式中任选一题,用上面的话说一说。
2、再摆图形,感受“顺序”
学生独立练习后,组织汇报。
根据学生的回答,投影出示相应的拼法,并相机板书:16÷1=16。
16÷2=816÷4=4。
你能结合这道算式,说说谁是谁的倍数,谁是谁的因数吗?
你能连起来说说16的因数有哪些吗?相机板书:16的因数有:1、16、2、8、43是不是16的因数,为什么?5呢?明确因倍关系的依据。
3、数形结合,掌握方法。
将你找出的36的因数写在练习纸上。
展示学生的作品。36的因数有:1、36、2、18、3、12、4、9、6.将方法优化:根据数形结合的思想,运用除法算式一对一对地找一个数的因数更为简便,并且能够做到不重复、不遗漏。
4、观察思考,发现规律。
引导学生观察12的因数、16的因数和36的因数。
提问:观察上面的三个例子,你又有什么发现?在小组内讨论。
明确:1是所有非零自然数的因数。
既然1是所有非零自然数的因数,那么换句话说,也就是所有非零自然数都是1的?(让学生接上说倍数)。
四、综合练习,加深理解。
2、你猜、我猜、大家猜。
1)、茶杯每只4元,我去超市买了一些茶杯,猜猜我可能用了多少元?让学生尽可能说出不同答案,师适时追问:可能吗?如有错误,要求学生说出错在哪里,明确用去的钱数是4的倍数。
2)、出示边长3厘米的正方形。
a、长24cm、宽8cm。
b、长36cm、宽4cm。
根据12的因数的个数比16的因数的个数多,引导学生得出并不是数字越大,因数的个数就越多。然后然学学生找出60的所有因数。
五、总结延伸。
。