编写教案能够帮助教师全面了解教学内容,并有针对性地组织教学活动,提高教学质量。教案的编写需要注重思维导图的运用,以帮助学生更好地理解和记忆知识点。以下是一些经过实践验证的优秀教案,希望对大家有所帮助。
五年级数学约数和倍数教案篇一
1、让学生大胆地、自由地想、说、做。
语言是思维的外壳。天真烂漫的孩子是怎么想的,只有通过他们的说才能反映出来。为此,在进行整除意义的教学时,首先让学生独立研究(即自主探究),通过自己动手分一分、想一想,然后再小组合作交流彼此的想法、分法,求同存异,最后通过争论得出正确结论。这样的方法正符合新课程标准所倡导的学习方法。
2、让学生在游戏中体会、感悟。
玩,是孩子的天性,让孩子在玩耍中;轻松地获取知识是极好的学习途径。因此,在约数和倍数的概念建立之后,组织学生做游戏,在游戏中找具体数的倍数和约数,从中体会、感悟知识的内涵与外延。这正符合新课程标准所要求的重视学生的情感体验,重视学生的体会、感悟。同时也使学生感受到了数学的趣味性和无穷魅力。
3、置身于学生当中,做学生的一员,增强与学生的亲和力。
五年级数学约数和倍数教案篇二
教学目标:
使学生在理解自然数,整数意义的基础上理解整除。约数和倍数的意义。能正确的判别整除和除尽,约数和倍数可含义,为学生求最带公约数和最小公倍数大好基础。
教学过程:
一、复习。
1、学生回答。
(1)什么叫做自然数?
(2)哪些是整数?
(3)整数和自然数有什么关系?
二、引入新课。
1、观察除法算式。
15÷3=31.5÷3=0.5。
24÷4=63.6÷09=4。
80÷20=416÷3=5……1。
2、找出左边三题和右边三题有什么不同?
3、回答提问。
左边:被除数、除数、商都是自然数。
右边:被除数、除数、商是小数且有些还有余数。
4、揭示整除的意义。
5、讲解约数也倍数两个概念。
6、例题讲解。
15除以5,商是3,没有余数----15能被5整除。
如果数a能被数b整除,a就叫b的倍数,b就叫做a的`约数。
7、整除与除尽的概念区别。
除尽包括整除,能除尽的不一定能整除,能整除的一定能除尽。
三、巩固练习。
四、总结布置作业。
反思:数的整除应强调以下几点:。
1、数的整除里的数指自然数。
2、只有当被除数和除数、商都是自然数的时候,且没有余数才能说整除,
3、应让学生通过多种渠道知道倍数和约数的概念。因为这在以后的教学中是非常重要的。
4、区别整除与除尽的关系。应通过多种例子让学生真正的了解。
五年级数学约数和倍数教案篇三
人教版小学数学五年级下册第17、18页。
1.我能掌握2、5的倍数的特征,并利用特征判断一个数是不是2、5的倍数。
2.我知道什么是奇数和偶数。
了解2、5的倍数的特征及奇数和偶数的含义。
能正确地求出符合要求的数。
收集电影票。
一、导入新课。
二、检查独学。
1.互动,检查独学部分第1、2题完成情况。
2.质疑探讨。
三、合作探究。
(一)2、5的倍数的特征。
1.小组合作。
仔细回顾独学题2,再与同伴分享自己的收获。
2.小组代表展示汇报。
3.小组合作交流,验证规律。
我们的想法:
小组代表汇报、总结。
4.试试身手。
(1)独立完成第18页“做一做”。
(2)集体交流。我又发现了:
(二)奇数和偶数。
1.自主阅读教材。根据自学内容,我知道:
根据是否是2的倍数,可把自然数分为和两类。是2的倍数的数叫做,不是2的倍数的数叫做。
2.组内交流,并讨论:0是不是2的倍数?为什么?
3.汇报总结。
4.我能说出身边的奇数和偶数。
5.做一做(第17页)。
五年级数学约数和倍数教案篇四
学习内容:
人教版小学数学五年级下册第21页第8题、第22页。
学习目标:
1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。
2.我能运用2、5、3的倍数的`特征解决问题。
学习重点:
熟练掌握2、5、3的倍数的特征。
学习难点:
运用2、5、3的倍数的特征解决综合问题。
教学过程:
一、导入新课。
二、检查独学。
1.互动分享独学部分的完成情况。
2.质疑探讨。
三、合作探究。
1.小组合作,完成课本第21页第8题。
(1)3个3的倍数的偶数________________。
(2)3个5的倍数的奇数________________。
讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?
2.自主完成第22页第10题,然后与同伴交流。
3.小组合作,完成第11题,然后组内代表汇报。
4.小组交流“生活中的数学”。
将本文的word文档下载到电脑,方便收藏和打印。
五年级数学约数和倍数教案篇五
教学目标:
1、使学生学会找出一个数的约数的方法,能正确、便捷地找出一个数的约数。
2、学会找出一个数的倍数的方法,能正确地找出一个数的一些倍数。
教学过程:
一、准备题。
1、什么是整除?
2、25和5,谁能被谁整除,谁是谁的倍数,谁是谁的约数?
二、教学例118和24的约数各有哪几个?
1、首先明确找一个数的约数,就是看这个数能被那些自然数整除?
找18的约数,就是看18能被哪些自然数整除:18除以=()。
2、找约数的方法;
a、从最小的自然数1找起,也就是最小的约数找起,一直找到它本身。
b、用一一对应的试除法来做:也从最小的自然数试除,在能整除的时候,除数和商都是这个数的约数,不成整除的时候,除数和商都不是这个数的约数,一直除到除数比商大为止。
18/1=18(1和18都是18的约数)。
18/2=9(2和9都是18的约数)。
18/3=6(3和6都是18的约数)。
18/4不能整除。
18/6=3除数已比商大。
18的约数按顺序排列是:1、2、3、6、9、18。
3、用同样的方法找24的约数。
24/1=24(1和24都是24的约数)。
24/2=12(1和24都是24的约数)。
24/3=8(1和24都是24的约数)。
24/4=6(1和24都是24的约数)。
24/5不能整除。
24/6=4除数已比商大。
4、观察约数的特征:
18、24的约数也可以分别用图表示。
思考:根据上面的图回答。
五年级数学约数和倍数教案篇六
教学目标:
1、使学生学会找出一个数的约数的方法,能正确、便捷地找出一个数的约数。
2、学会找出一个数的倍数的方法,能正确地找出一个数的一些倍数。
教学过程:
一、准备题。
1、什么是整除?
2、25和5,谁能被谁整除,谁是谁的倍数,谁是谁的约数?
二、教学例118和24的约数各有哪几个?
1、首先明确找一个数的约数,就是看这个数能被那些自然数整除?
找18的约数,就是看18能被哪些自然数整除:18除以=()。
2、找约数的方法;
a、从最小的.自然数1找起,也就是最小的约数找起,一直找到它本身。
b、用一一对应的试除法来做:也从最小的自然数试除,在能整除的时候,除数和商都是这个数的约数,不成整除的时候,除数和商都不是这个数的约数,一直除到除数比商大为止。
18/1=18(1和18都是18的约数)。
18/2=9(2和9都是18的约数)。
18/3=6(3和6都是18的约数)。
18/4不能整除。
18/6=3除数已比商大。
18的约数按顺序排列是:1、2、3、6、9、18。
3、用同样的方法找24的约数。
24/1=24(1和24都是24的约数)。
24/2=12(1和24都是24的约数)。
24/3=8(1和24都是24的约数)。
24/4=6(1和24都是24的约数)。
24/5不能整除。
24/6=4除数已比商大。
4、观察约数的特征:
18、24的约数也可以分别用图表示。
思考:根据上面的图回答。
1、约数中最小的一个是什么数?(1)。
2、约数中最大的一个是什么数?(本身)。
3、一个数的约数的个数是有限的。
1、2、3、6、9、18。
1、2、3、4、6、8、12、24。
18的约数24的约数。
5、练一练。
找15和36的约数各有哪几个?
三、教学例23和5的倍数各有哪些?
1、求一个数的倍数,可以把这个数分别乘以1、2、3…..。所以。
3的倍数有3、6、9、12、15、18、21、24、27……。
5的倍数有5、10、15、20……….
3、6、9、12、15、18……。
2、3、5的倍数也可以分别用图表示:
5、10、15、20、25、30……。
3的倍数5的倍数。
观察上图发现:(1)一个数最小的倍数是什么数?(本身)。
(2)一个数有没有最大的倍数?(没有)。
(3)一个数的倍数的个数是无限的。
2、练一练。
(1)50以内4、9的倍数各有哪几个?
四、巩固练习。
1、在下面的圈里填上适当的数。
2、在4、8、16、32、40、48、64、80这几个数中,
80的约数有(4、8、16、40、80),
8的倍数有(8、16、32、40、48、64、80)。
3、32能被哪几个数整除?32有哪几个约数?32是哪几个数的倍数?
32能被1、32;2、16、4、8整除。32的约数有1、32、2、16、4、8。32是1、32、4、8、2、16的倍数。
五、总结布置作业。
反思:在教学找一个数的约数和倍数的时候,在以下几个方面的教学应加强:
1、约数中最大的和最小的约数是什么。
2、倍数中最大的和最小的倍数是什么。
3、强调一个数最大的约数和最小的倍数是一样大的是它本身,。
4、如何找出所有的约数,而且确认已全部找出的方法应加强。
五年级数学约数和倍数教案篇七
认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
五年级数学约数和倍数教案篇八
教学内容:
苏教版义务教育教科书《数学五年级下册第43~44页例11、例12和“练一练’’,第46练习七第9~10题。
教学目标:
1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。
2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。
教学重点:
教学难点:
教学准备:
小黑板。
教学过程:
一、揭示课题。
提问:看了这个课题,你有什么想法?你对公倍数有哪些想法?对最小公倍数呢?
引导:大家交流的想法,实际上是联系公因数和公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)。
二、学习新知。
1.认识公倍数。
(1)出示例11,让学生说说知道了些什么,提出的什么问题。
交流:哪个正方形能正好铺满,哪个不能铺满?
说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。
(2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。
交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米„„的正方形)。
(3)引导:现在你发现,6、12、18、24„„这些数和2、3都有什么关系?说说你的想法。指出:同学们的理解还真不错!大家发现6、12、18、24„„这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)。
追问:8是2和3的公倍数吗?为什么不是?
2.求公倍数。
结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。
小结:大家用不同的方法找出了6和9的公倍数有18,36,54„„其中’最小的是18。18是6和9的最小公倍数。
追问:有没有的公倍数?为什么?
说明:两个数的公倍数有无数个,没有的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)。
3.用集合图表示公倍数。
引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。
让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。
指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。
三、巩固深化。
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习七第9题。
4.做练习七第10题。
四、总结提升。
五年级数学约数和倍数教案篇九
4、培养学生的观察能力。
掌握找一个数的因数和倍数的方法。
能熟练地找一个数的因数和倍数。
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12。
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)。
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。
齐读p12的注意。
二、新授:
(一)找因数:
1、出示例1:18的因数有哪几个?
学生尝试完成:汇报。
(18的因数有:1,2,3,6,9,18)。
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36。
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)。
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如。
18的因数。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……。
师:为什么找不完?
你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍数最小是几?最大的.你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12。
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……。
你是怎么找的?(用3分别乘以1,2,3,……倍)。
5的倍数有:5,10,15,20,……。
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业:
完成练习二1~4题。
五年级数学约数和倍数教案篇十
本节课是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。
在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。本节课的意图是通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。但是,教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。本节课把“原来铺墙砖”的题目改为“找两人的共同休息日”来建立概念。体现了新课标的要求,学生的学习内容应该是现实的、有意义的、富有挑战性的;有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;使学生感到数学就在自己身边。充分利用课堂中最有效的时间是前15钟,做好这段时间的教学,提高了学习效率。
二、吃透教材,确定准确的教学目标。
教师主要围绕,让理解两个数的公倍数和最小公倍数的意义,通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化,渗透集合思想,培养学生的抽象概括能力这些目标展开教学。把本节课的重点应放在学生对数的概念的认识上,体现了新课标中“4—6年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数”的要求。小学生的生活实际问题的解决能力普遍较低,把运用“公倍数与最小公倍数”的知识解决简单的生活实际问题,定为本节课的难点。体现新课标中“人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能”的要求。
三、吃透教材,设计流畅的教学环节。
1、利用情境引入新课,通过月历探索新知。学生在月历上找出4和6的倍数的`日期,清楚形象的看到两个数的倍数关系。
2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。学生探索后,引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,用自己的语言梳理新知,使学生在环环相扣的教学进程中顺理成章的理解概念,把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念,沟通二者之间的联系。
3、创设问题情境,尝试应用,方法提炼。结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。
4、巩固练习、不断刺激,不断巩固提升。先让学会用最基本的方法求两个数的最小公倍数。再用这样的知识解决生活中的排队问题,用富有生活气息的情境,激发学习兴趣,再次打通生活与数学的屏障。接着是找生日,铺墙砖,让用数学方法来解释生活现象,感受到求公因数与求公倍数的联系。
4、学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。
总之,本节课体现了这样的设计理念:将直观演示与抽象思维相结合,让学生在自主参与的基础上感悟、理解、应用、巩固。
五年级数学约数和倍数教案篇十一
游戏目的。
2、树立敢于探索的勇气和信心.。
游戏规则。
老师出示一张卡片,如果学生的学号数是卡片上的数的倍数,就可以走开.走的时候,必须先走到讲台前,大声说一句话,再走出教室.学生说的一句话,可以是“几是几的倍数”、“几是几的约数”或“几能被几整除’其中的任意一句.”
五年级数学约数和倍数教案篇十二
人教版小学数学五年级下册教材第12—13页。
1.我能理解因数与倍数的含义。
2.我会有序地思考,掌握了找一个数的因数的方法。
3.我知道一个数的因数的个数是有限的。
理解因数和倍数的含义,掌握求一个数的因数的方法。
能熟练地找一个数的因数。
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
三、合作探究
1.小组讨论:乘法算式中的因数和这里讲的因数一样吗?
(1)我的想法:________________________________
(2)小组代表交流、汇报。
(3)自读课本第12页下面的一段话。
2.自学课本第13页例1。思考:
(1)18的因数有________、________、________、________、________、________,共 有________个。
(2)18的最小因数是________,最大因数是________。它的因数的个数是________的。
(3)也可以这样表示: 18的因数
3.组内交流并讨论:怎样找最快,而且不容易遗漏?
我的想法:________________________________
4.小组代表汇报,总结。
5.试试身手(第13页“做一做”)。
五年级数学约数和倍数教案篇十三
1、让学生大胆地、自由地想、说、做。
语言是思维的外壳。天真烂漫的孩子是怎么想的,只有通过他们的说才能反映出来。为此,在进行整除意义的教学时,首先让学生独立研究(即自主探究),通过自己动手分一分、想一想,然后再小组合作交流彼此的想法、分法,求同存异,最后通过争论得出正确结论。这样的方法正符合新课程标准所倡导的学习方法。
2、让学生在游戏中体会、感悟。
玩,是孩子的天性,让孩子在玩耍中;轻松地获取知识是极好的学习途径。因此,在约数和倍数的概念建立之后,组织学生做游戏,在游戏中找具体数的倍数和约数,从中体会、感悟知识的内涵与外延。这正符合新课程标准所要求的重视学生的情感体验,重视学生的体会、感悟。同时也使学生感受到了数学的趣味性和无穷魅力。
3、置身于学生当中,做学生的一员,增强与学生的亲和力。
古人云,亲其师则信其道。我觉得当今的教育也是如此。老师只有不断增强与学生的亲和力,学生才能乐意跟着学习。为此,在学习约数和倍数之前,我组织学生编号时,把自己也编入学生之列,并与学生共同游戏,置身于学生当中,使学生感受到教师就是他们的朋友,就是他们中的一员,这也正体现了师生平等的新理念。
五年级数学约数和倍数教案篇十四
一、填空。
1.能被2整除,又有约数3,也是5的倍数,最小的数是()。
2.一个三位数,能同时被4、7、8三个数整除,这个数至少是()。
3.用3、2、5去除都余1的数中,其中最小的一个是()。
4.已知a43b是一个四位数,而且是45的'倍数,这个数是()或()。
5.几个质数连乘的积是数。
6.一个数能同时被2、3、5整除,这个数最小是()。
7.两个互质的合数,它们的和是19,它们的积是()。
8.把合数分解质因数:
221=();803=();1001=()。
9.从8开始五个边连续偶数的和是()。
10.10以内所有质数的积减去最小的三位数,差是()。
二、求下面各组数的最大公约数(三个数的除外)与最小公倍数。
18和1230和4824和7628和3612和1316和96。
8、10和1210、15和1812、60和165、6和722、44和77。
三、在1、2、3、6、15、27、43、70、84、97、210中。
奇数有:()。
偶数有:()。
质数有:()。
合数有:()。
能被2整除的数有:()。
能被3整除的数有:()。
能被5整除的数有:()。
能同时被2、3整除的数有:()。
能同时被2、5整除的数有:()。
能同时被2、3、5整除的数有:()。
四、长36厘米,宽18厘米,高72厘米的长方体木块截成标棱长尽可能大的正方体木块。
1.每条棱长几厘米?
2.可截成多少个正方体木块?
五年级数学约数和倍数教案篇十五
《倍数和因数》是小学人教版课程标准实验教材五年级下册第2单元的内容,也是小学阶段“数与代数”部分最重要的知识之一。《因数和倍数》的学习,是在初步认识自然数的基础上,探究其性质,其中涉及到的内容属于初等数论的基本内容,相当抽象。在这一内容的编排上与以往的教材有所不同,没有数学化的语言给“整除”下定义,而是在本课时通过乘法算式借助整除的模型na=b直接给出因数与倍数的概念。在地位上,这节课是因数、倍数的概念引入,为本单元后面的内容、以及第四单元的最大公因数、最小公倍数提供了必需且重要铺垫。(注:教学目标、教学重、难点略)。
二、说学情分析。
本节课内容是五年级下册的内容,但采取借班上课的形式,选取了四年级的学生。在此之前,学生已经已经分段认识了亿以内的整数,基本完成了整数四则运算的学习(本学期刚学完)。但学生由于年龄的关系和个人思维发展的不同,在抽象能力和语言表达和思考的全面性方面需要老师的进一步引导。但由于本课是由乘法引入,且减少了以前老教材关于“整除”等繁杂概念,大大简化了叙述和记忆的过程,预期学生是可以理解并掌握的。
三、说设计理念。
本节课的在设计理念上,本人总结四点特点,而这四个特点也。
刚好在我教学的四个环节中生成:
第一,从生活切入,实现数形结合,完成概念的有意义建构。
数论的内容,如果从数字本身出发进行研究,对小学生来说就抽象了些。本节课,教师以解决问题“12个小正方形拼成一个长方形,有哪几种拼法?”为引子,让学生在解决这个问题的过程中,学习数学概念,避开了抽象,有利于帮助学生完成有意义的建构。同时,在解决问题时,学生思考“哪几种拼法”时,教师给出了不同的建议,可以想象,也可以在本子上画一画,这样既符合不同的学生思维发展有不同,老师有针对的引导,其次,使数与形有机地结合,这样,学生对概念的理解不仅是数字上的认识,而且能与操作活动与图形描述联系起来。学生经历了“先形后数”的过程,也就是知识抽象的过程。
第二,抓住学生思维的“最近发展区”,促使学生学会有序思考,从而形成基本的技能与方法。
能列举一个数的因数,是本节课技能目标中很重要的一部分。教学活动中,教师牢牢的抓住了学生思维的“最近发展区”,让学生在已有经验的基础上,独立的列举一个数的因数,在集体交流的过程中,教师适时的追问“用什么方法找的?”,让学生充分暴露个性化的思考方法,教师点拨出学生思维中各自的优势:一对一对的找;从“1”开始有序的找,再通过有效分析,取得学生整体的认同。这样的设计,让学生在独立思考——集体交流——互相讨论过程中,学习有序思考,从而形成基本技能与方法,做到即关注了过程,又关注了结果。
第三,充分借助生成的素材,实现有效的合作探索,引导学生在比较中归纳寻找共性。
一个数的因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,教师提出问题“任意一个自然数的因数有什么特点?”,让学生观察6、11、16和24的因数,思考:一个数的因数的个数是有限的还是无限的?其中最小的是几?最大的是几?教师在研究方法方面给学生提供了引导,学生的思维有了明确的指向,便于通过探索发现规律。
第四,重视数学意义的渗透与拓展,力求用数学的本质吸引学生,促进学生学习数学的持续发展。
数学教学,要树立为学生的继续学习、终身发展服务的意识,不能关注短效、急功近利。本节课的设计,教师就注意到了学生的学习后劲。如在备课之初,在是否需要完美数的介绍这一抉择上,教师反复考虑:由于一节课的`时间有限,为表达因数与倍数的整体关系,很多老师在设计内容时,都在一个课时就将求因数和求倍数的方法全部包含。但最终本人选择舍去求倍数,把它放在了后面的课时学习,将完美数的介绍以及小故事纳入本节课的教学,虽然此内容和现行学习任务之间的关系都不大,但却是学生继续学习数学所需要的,因为只有有了文化的气息,数学才变得有了灵魂,让学生感觉数学的厚重、数学的魅力,才能让学生透过枯燥,产生对数学的积极情感,增强学习数学的持久动力。
四、说教学效果。