总结是一种思维上的整理和升华,能够使我们对所学或所做的事情有更深入的理解。写一篇完美的总结首先要明确总结的目的和对象。总结的目的不仅是给自己一个回顾,也可以给他人分享经验和教训。
六年级数学知识点总结篇一
第二单元位置与方向(二)。
1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物体位置的方法:
(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东-西;南-北;南偏东-北偏西。
六年级数学知识点总结篇二
课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。
2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。
有些同学平时做作业都会做,可一到考试就犯不是算错数,就是看错题等等低级错误。这是因为平时解题时随便、粗心、大意等,所以小朋友平时要养成良好的解题习惯是非常重要的!
1、首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。
2、调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
3、考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
六年级数学知识点总结篇三
1.最小的一位数是1,最小的自然数是0。
2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
4.小数的分类:小数、有限小数、无限循环小数、无限小数、无限不循环小数、
出自 wWW.KAoYanmiJI.cOm
5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
六年级数学知识点总结篇四
国之恨,弥留之际请求把心脏带回祖国,表达了对祖国强烈的爱。
2.肖邦:波兰最伟大的作曲家、钢琴家,被称为“浪漫主义的钢琴诗人”,作。
品有《革命练习曲》、《悲伤》。
3.中外爱国音乐家:冼星海、聂耳、乔羽、贝多芬、莫扎特、舒伯特。
4.表现爱国情怀的成语:赤胆忠心、忧国忧民、碧血丹心、精忠报国、以身许国。
5.表现忘我工作、学习的成语:夜以继日、通宵达旦、废寝忘食、争分夺秒。
6.爱国名言:天下兴亡,匹夫有责。——顾炎武。
位卑未敢忘忧国——陆游。
【习题解答】。
习题3答案:1.悲愤欲绝:悲痛愤怒到了极点。绝,气息中止、死亡。
2.与世长辞:永远离开人世。辞,告别。
习题4答案:1.埃斯内尔把泥土作为“特殊礼物”送给肖邦,为的是让肖邦永远不要忘记自己的祖国。
2.“弥留之际”指病危将死的时候,肖邦对姐姐说的话,表达了他至死不忘祖国的强烈爱国情感。
4古诗两首。
1.《闻官军收河南河北》是唐代诗人杜甫的作品,被前人称为“杜甫生平第一快诗”。这首诗描写了诗人听到官军收复失地的消息之后惊喜欲狂的心情,反映了诗人渴望安定生活的思想。“即从巴峡穿巫峡,便下襄阳向洛阳。”这一句准确地表达了诗人的归心似箭和为收复失地而喜悦的心情。
(2)杜甫被誉为“诗圣”,他的诗被誉为“诗史”。
(3)全诗体现了一个“喜”字,从“初闻涕泪满衣裳”、“漫卷诗书喜欲狂”、“白日放歌须纵酒”、“却看妻子愁何在”等词句可以体会到诗人因听到大唐军队收复失地而欣喜。
2.《示儿》是南宋爱国诗人陆游的绝笔,诗中作者以遗嘱的口吻,表达了作者对收复失地、洗雪国耻、重新统一祖国的无比渴望。
3.表现爱国情怀的古诗名句:
但使龙城飞将在,不教胡马度阴山。——(唐)王昌龄《出塞》。
先天下之忧而忧,后天下之乐而乐。——(宋)范仲淹《岳阳楼记》。
【习题解答】。
习题3答案:1.妻子:夫人和孩子。漫:随意,胡乱。全句的意思是:再看看夫人和孩子,他们的忧愁不知哪里去了;我胡乱地把诗篇和书籍一卷,高兴得简直要发狂。2.元:同“原”,本来。但:只。全句的意思是:我本来就知道人一死就什么都不知道了,只是为不能看见祖国的统一而感到悲伤。
习题4答案:因为陆游一直将驱逐金兵,收复失地作为自己的头等大事,这也是他一生念念不忘的事,虽然他没有亲眼看到祖国统一,但他坚信总有一天宋朝的军队会平定中原,光复失地,所以叮嘱儿子“王师北定中原日,家祭无忘告乃翁。”,由此也可见诗人强烈的爱国之情。
六年级数学知识点总结篇五
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的.和的简便运算。
2、一个数与分数相乘,可以看作是求这个数的几分之几是多少。
(二)分数乘法的计算法则:
1、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
2、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
5、规律:(乘法中比较大小时)。
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
6、分数混合运算的运算顺序和整数的运算顺序相同。
7、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:ab=ba。
乘法结合律:(ab)c=a(bc)。
乘法分配律:(a+b)c=ac+bc。
六年级数学知识点总结篇六
基础知识的复习是最繁琐的。内容多,量大。因此我采用了两步制。将知识分层次复习。简单的要学生在家里完成复习,教师抽查。如字.词的复习。
每天要求学生安排一定的复习时间,教师通过告诉学生第二天抽查的内容,掌握学生每天的复习量,并要求学生结成复习小组,互相督促,当天的复习任务必须当天完成,形成生生互动的良好模式。
此同时,我不失时机地扩大学生的阅读量,从文章中找出关键词语,让学生分析理解,既增长了能力,又开阔了学生的眼界。基础知识中比较复杂的是语法知识。小学不要求教师明确地讲授各种语法知识,只要求学生理解,并在理解的基础上运用。
如:关联词语的使用,比喻、排比、拟人、设问、反问等修辞手法,都是很笼统地描述。因此学生记忆不深刻,问题比较多,如果单纯靠老师讲,有些问题就会错过。于是我采用课堂上将课本上的相关例句引导学生分析,掌握方法。
课下要学生分组,利用手头的复习资料查找相关的题目,并进行分类。课堂上,变老师问而学生问,而教师根据学生收集的资料,以及学生的质疑,采用抓重点难点的方法复习,讲解。并根据反馈情况,进行相应的指导,布置相应的练习。
这样复习渐渐变成学生自己的事情,而教师则处于一个辅导的地位。逐步使学生自主学习,提高了学习兴趣.使学生处于一个良好的复习心态中,提高了复习效率。而对于标点、修改病句、扩句等练习,我放在了阅读部分进行。
二.阅读理解部分的复习与作文练习相结合。
阅读理解部分的复习包含课文的理解,段篇章的分析。对于课文的理解,我首先要求学生再读课文,再一次去理解作者的写作意图,整理出每篇课文的重点知识,形式可以多种多样,可以用手抄报或出试卷的方式把课文的基础知识、重点片断及需要理解的句子进行归纳总结。
在此基础上把重点课文的进一步理解,品词析句,去感受语言的魅力,学习语言的运用。在课外阅读练习时,我将阅读训练和作文练习同时进行。先将文章分类,叙事的、借物抒情的、写景的等。而后进行分析文章基本技巧的训练,先进行小的段落分析练习,由易到难,循序渐进。
注意的是,首先要求学生在读通文章的前提下(也就是将文中的字、词的含义弄懂),再去进行分析。在分析段落的同时,让学生将学习到的方法运用到写作中去,尝试写一些小片段,成功率比较高。而在修改的过程中,又进行标点、修改病句及扩句的练习。
这样既巩固了基础知识又锻炼了分析能力,提高了写作能力,使三者有机地结合在一起。然后进行篇章的分析练习就简单多了。在阅读训练中,根据学生手中有许多复习资料这一有利条件,我要求学生根据教师要求自己准备文章,然后小组讨论,根据文章类型、内容出题,并给出正确答案。
再经由教师审核,组与组之间交流,这样一个班十个学习小组,十套题出来了,在交流的过程中,学生有时发生争议,教师根据不同情况处理,只要学生说得有道理,教师一般都采取肯定的态度。课堂上解决不了的,就采取先挂起来,课下取经的方式解决,争取不留尾巴。
篇章的分类练习,也要结合写作的训练。我要他们整理日记本,选择好的素材,一类文章的分析练习结束后,就是写作练习,没时间写成篇的,就写片段或主要内容。有素材,又有方法,一般学生能做到言之有理,言之有物,作文水平一定会提高。
六年级数学知识点总结篇七
2、从个位加起;。
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条。
2、从个位减起;。
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则。
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;。
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;。
3、算式里有括号的要先算括号里面的。
(四)四位数的读法。
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;。
2、中间有一个0或两个0只读一个“零”;。
3、末位不管有几个0都不读。
(五)四位数写法。
1、从高位起,按照顺序写;。
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)4位数减法也要注意三条。
2、从个位减起;。
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则。
1、从个位起,用一位数依次乘多位数中的每一位数;。
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则。
2、除数除到哪一位,就把商写在那一位上面;。
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则。
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;。
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;。
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则。
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;。
3、每求出一位商,余下的数必须比除数小。
1、先读万级,再读个级;。
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;。
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则。
1、从高位起,一级一级往下读;。
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;。
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
六年级数学知识点总结篇八
1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
数的改写。
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。
2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。
345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。
4.大小比较。
(1).比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看位,位上的数大,那个数就大;位上的数相同,就看下一位,哪一位上的数大那个数就大。
(3).比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
六年级数学知识点总结篇九
1、数与代数:
比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程旳基础知识;
能比较熟练地进行整数、小数、分数旳四那么运算;
能进行整数、小数加、减、乘、除旳估算;
会使用学过旳简便算法,合理、灵活地进行计算;
会解学过旳方程;
养成检查和验算旳适应。
巩固常用计量单位旳表象,掌握所学单位间旳进率,能够进行简单旳改写。
2、空间与图形:
掌握所学几何形体旳特征;
能够比较熟练地计算一些几何形体旳周长、面积和体积,并能应用;
巩固所学旳简单旳画图、测量等技能;
巩固轴对称图形旳认识,会画一个图形旳对称轴,巩固图形旳平移、旋转旳认识;
能用数对或依照方向和距离确定物体旳位置,掌握有关比例尺旳知识,并能应用。
3、统计与可能性:
掌握所学旳统计初步知识;
能够看和绘制简单旳统计图表;
能够依照数据做出简单旳推断与预测;
会求一些简单事件旳可能性;
能够解决一些计算平均数旳实际问题。
1、两个连续整数中必有一个奇数和一个偶数。
2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。
3、奇数—奇数=偶数;偶数—奇数=奇数;奇数—偶数=奇数。
4、若a、b为整数,则a+b与a—b有相同的奇偶性,即a+b与a—b同为奇数或同为偶数。
5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数。
6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。
7、奇数的平方除以2、4、8余1。
8、任意两个奇数的平方差是2、4、8的'倍数。
1、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。
2、两条平行线之间的距离处处相等。
3、两组对边分别平行的四边形叫做平行四边形;平行四边形有无数条高,平行四边形不是轴对称图形。
4、一个平行四边形在拉动过程中,面积变化,高变化,周长不变。平行四边形具有易变性。
5、只有一组对边平行的四边形叫梯形。
当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。等腰梯形是轴对称图形。
四个角都是直角的四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
5、画高:
从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。垂足所在的边叫做平行四边形的底。
当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。
特别注意:画高时,请注意;虚线、垂直标记、和名称
六年级数学知识点总结篇十
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母o表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=。
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)。
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形。
只有3条对称轴的图形是:等边三角形。
只有4条对称轴的图形是:正方形;。
有无数条对称轴的图形是:圆、圆环。
六年级数学知识点总结篇十一
1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3.能借助数轴初步学会比较正数、0和负数之间的大小。
4.像-16、-500、-3/8、-0.4…这样的数叫做负数。
-3/8读作负八分之三。
16,200,3/8,6.3…这样的数叫做正数。正数前面可以加“+”号,也可以省去“+”号。
+6.3读作正六点三。
0既不是正数,也不是负数。
6.如果表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。
7.在数轴上,从左到右的顺序就是数从小到大的顺序。
0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。
负号后面的数越大,这个数就越小。如:-8-6。
逻辑推理。
条件分析—假设法:
假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。
条件分析—列表法:
当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。
条件分析—图表法:
当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如a和b两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。
逻辑计算:
在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。
简单归纳与推理:
根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。
六年级数学知识点总结篇十二
六年级数学下册知识点为大家介绍了分数,把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
六年级数学知识点总结篇十三
1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归。
5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
8.小数的倒数:
9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。
15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
六年级数学知识点总结篇十四
1、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4、分数乘整数:数形结合、转化化归
5、倒数:乘积是1的两个数叫做互为倒数。
6、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
8、小数的倒数:
普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1。
9、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10、分数除法:分数除法是分数乘法的逆运算。
11、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。
15、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
六年级数学知识点总结篇十五
1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。
3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
3、分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
5、分子分母是互质数的分数叫做最简分数。
6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
1、0既不是正数也不是负数,而是介于—1和+1之间的整数。
2、0的相反数是0,即—0=0。
3、0的绝对值是其本身。
4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
6、0的正数次方等于0,0的负数次方无意义,因为0没有倒数。
7、除0外,任何数的的0次方等于1。
8、0也不能做除数、分数的分母、比的后项。
9、0的阶乘等于1。
六年级数学知识点总结篇十六
1.根据方向和距离可以确定物体在平面图上的位置。
2.在平面图上标出物体位置的方法:
先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。
3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。
4.绘制路线图的方法:
(1)确定方向标和单位长度。
(2)确定起点的位置。
(3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。
(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)。
(二)分数乘法计算法则:
1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)。
(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)。
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b1时,ca。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b1时,c。
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
比例。
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:
8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
六年级数学知识点总结篇十七
知识点概念:
1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归。
5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
8.小数的倒数:
9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。
六年级数学知识点总结篇十八
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即先列后行。
作用:确定一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中x轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(x,5)的行号不变,表示一条横线,(5,y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
( 列 , 行 )
竖排叫列 横排叫行
(从左往右看)(从下往上看)
(从前往后看)