在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
高中数学主要知识点高中数学高考重点知识点篇一
设x和y是两个变量,d是实数集r的某个子集。如果对任何的x∈d,按照某种对应法则,变量y总有确定的值与之对应,则称变量y是定义在d上变量x的函数,记作y=f(x)。称d为该函数的定义域,称x为自变,y为因变量。
当自变量x取数值xo∈d时,与xo对应的因变量y的值称为函数y=f(x),当x取遍d的所有数值时,对应的变量y取值的全体组成的数集称为函数y二f(x)的值域。
如果自变量在定义域内任取一个值时,对应的`函数值只有一个,这种函数称为单值函数,否则称为多值函数。
例如,y=3x+l是单值函数,而由方程x2+y2=1确定的函数y=士√1-x2就是多值函数。以后凡没有特别说明,本书所讨论的函数都是指单值函数。
函数的表示法通常有三种,即表格法、图示法和公式法。
由函数的定义知,确定函数的两个基本要素是定义域和对应法则。也就是说,两个函数只有当它们的定义域和对应法则完全相同时,两个函数才是相同的。
∣f(x)∣≤m
成立,则称了(x)在x上有界,如果这样的m不存在,则称函数在x上无界。
(2)单调性。设函数y=f(x)在区向x上有定义。如果对于任意的x1,x2∈x,当x1x2时,均有f(x1)
(3)奇偶性设函数y=f(x)的定义域d是关于原点对称的,如果对于任意的x∈d,均有f(x)=f(一x),则称。f(x)为偶函数;如果对于任意的x∈d,均有f(x)=-f(x),则称了(x)为奇函数。
(4)周期性设函数y=f(x),如果存在不为零的常数t,使得对于任意x∈d均有x+t∈d,且f(x)=f(x+t)成立,则称函数y=f(x)为周期函数,称t为f(x)的一个周期。
显然,若t是周期函数f(x)的周期,则kt也是f(x)的周期((k=士1,士2,士3,……)。
通常我们说的周期是指最小正周期。
高中数学主要知识点高中数学高考重点知识点篇二
(一)指数与指数幂的运算
当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号-表示。正的次方根与负的次方根可以合并成±(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
3.实数指数幂的运算性质
(二)指数函数及其性质
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
高中数学主要知识点高中数学高考重点知识点篇三
注意:
函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
2.高中数学函数值域:先考虑其定义域
(1)观察法
(2)配方法
(3)代换法
3.函数图象知识归纳
(2)画法
a、描点法:
b、图象变换法
常用变换方法有三种
(1)平移变换
(2)伸缩变换
(3)对称变换
4.高中数学函数区间的概念
(1)函数区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
5.映射
对于映射f:a→b来说,则应满足:
(1)函数a中的每一个元素,在函数b中都有象,并且象是的;
(2)函数a中不同的元素,在函数b中对应的象可以是同一个;
(3)不要求函数b中的每一个元素在函数a中都有原象。
6.高中数学函数之分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈m),u=g(x)(x∈a),则y=f[g(x)]=f(x)(x∈a)称为f、g的复合函数。