教案应该是一个有机整体,各个环节之间功能互补,紧密联系,体现课程的连贯性和系统性。编写教案要注重培养学生的学习策略和解决问题的能力。如果你想要了解如何编写一份好的教案,以下是一些教案范文,供你参考和学习。
高三数学教案篇一
1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标。
1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标。
1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:
1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体。
【学前准备】对照指数函数试研究对数函数的定义、图象和性质。
高三数学教案篇二
1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)。
2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)。
高三数学教案篇三
(2)使学生初步了解“属于”关系的意义。
(3)使学生初步了解有限集、无限集、空集的意义。
【重点难点】。
教学重点:集合的基本概念及表示方法。
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。
授课类型:新授课。
课时安排:1课时。
教具:多媒体、实物投影仪。
【内容分析】。
高三数学教案篇四
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索主要环节,分为两个部分。
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质。
1.定义域、值域2.周期性。
3.单调性(重难点内容)。
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;。
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
(3)单调区间的探索过程是:
先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
**教师结合图象帮助学生理解并强调“距离”(“长度”)是周期的多少倍。
为什么要这样强调呢?
因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。
4.对称性。
设计意图:
(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。
(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。
5.最值点和零值点。
有了对称性的理解,容易得出此性质。
第二部分————学习任务转移给学生。
设计意图:
(3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。
(三)巩固练习。
补充和选作题体现了课堂要求的差异性。
(四)结课。
高三数学教案篇五
我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:
授之以渔,与之合作而渔,使学生享受渔之乐趣。因此。
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
高三数学教案篇六
(一)教法说明教法的确定基于如下考虑:
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。
所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二)教学手段说明:
为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
高三数学教案篇七
复习:
1、(课本p28a13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;
探究新知(复习教材p14~p25,找出疑惑之处)。
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
应用示例。
例2、7位同学站成一排,分别求出符合下列要求的不同排法的种数、
(1)甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
反馈练习。
当堂检测。
1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目、如果将这两个节目插入原节目单中,那么不同插法的种数为()。
a、42b、30c、20d、12。
课后作业。
高三数学教案篇八
(一)引入:。
(1)情景1。
2元/千克,而送到县城每千克大豆可获利1.2元,每千克红薯可获利0.6元,王老汉决定明天就带上家中仅有的1000元现金,踏着可载重350千克的三轮车开始自己的发财大计,可明天应该收购多少大豆与红薯呢?王老汉决定与家人合计.回家一讨论,问题来了.孙女说:“收购大豆每千克获利多故应收购大豆”,孙子说:“收购红薯每元成本获利多故应收购红薯”,王老汉一听,好像都对,可谁说得更有理呢?精明的王老汉心中更糊涂了。
(2)问题与探究。
师:同学们,你们能用具体的数字体现出王老汉的两个孙子的收购方案吗?
生,讨论并很快给出答案.(师,记录数据)。
师:请你们各自为王老汉设计一种收购方案.
生,独立思考,并写出自己的方案.(师,查看学生各人的设计方案并有针对性的请几个同学说出自己的方案并记录,注意:要特意选出2个不合理的方案)。
师:这些同学的方案都是对的吗?
生,讨论并找出其中不合理的方案.
师:为什么这些方案就不行呢?
生,讨论后并回答。
师:满足什么条件的方案才是合理的呢?
生,讨论思考.(师,引导学生设出未知量,列出起约束作用的不等式组)。
师,让几个学生上黑板列出不等式组,并对之分析指正。
(教师用多媒体展示所列不等式组,并介绍二元一次不等式,二元一次不等式组的概念.)。
生,讨论并回答(教师记录几组,并引导学生表示成有序实数对形式.)。
生,讨论并回答(教师对于学生的回答指正并有选择性的记录几组比较简单的数据,对于这些数据要事先设计好并在课件的坐标系中标出备用)。
(教师对引例中给出的不等式组介绍,并指出上面的正确的设计方案都是不等式组的解.进而介绍二元一次不等式(组)解与解集的概念)。
生,讨论并在下面作图(师巡视检查并对个别同学的错误进行指正)。
师,利用多媒体课件展示平面直角坐标系及不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解所对应的一些点,让学生观察并思考讨论:不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解在平面直角坐标系中的位置有什么特点?(由于点太少,我们的学生可能得不出结论)。
生,提出猜想:直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计分得的左下半平面.
师:这个结论正确吗?你能说出理由来吗?
生,分组讨论,并利用自己的数学知识去探究.(由于没有给出一个固定的方向,所以各人用的方法不一,有的可能用特殊点再去检验,有的可能会试着用坐标轴的正方向去说明,也有的可能会用直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计下方的点与对应直线上的点对照比较的方法进行说明)。
师,在巡视的基础上请运用不同方法的同学阐述自己的理由,并对于正确的作法给予表扬,然后用多媒体展示出利用与直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计横坐标相同而纵坐标不同的点对应分析的方法进行证明.
生:表示为二元一次不等式(组)与简单的线性规划问题的模块单元教学设计,(很快回答)。
师:从中你能得出什么结论?
生,讨论并得到一般性结论(教师总结纠正)。
(教师总结并用多媒体展示,二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的某侧所有点组成的平面区域,因不包含边界故直线画成虚线;二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域因包含边界故直线画成实线.)。
生,作图分析,讨论并回答(师,对学生的回答进行分析)。
师:结合上面问题请同学们归纳出作不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计对应的平面区域的过程.
生,讨论并回答(师,对于学生的答案给以分析,并肯定其中正确的结论)。
生,讨论并回答(教师总结并用多媒体展示:直线定界,特殊点定域)。
生,讨论,思考(教师巡视,并观察学生的解答过程,最后引导学生得出:一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解,一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解)。
生.讨论分析,最后得到不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计并求解.
师:若把上面问题改为点在同侧呢?请同学们课后完成.
(二)实例展示:。
例1、画出不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域.
例2、用平面区域表示不等式组二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解集.
(三)练习:。
学生练习p86第1-3题.
【及时巩固所学,进一步体会画出不等式(组)表示的平面区域的基本流程】。
(四)课后延伸:。
(五)小结与作业:。
二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计某侧所有点组成的平面区域,画出不等式(组)表示的平面区域的基本流程:直线定界,特殊点定域(一般找原点)。
作业:第93页a组习题1、2,
高三数学教案篇九
数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识水平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神等情感、态度方面都得到良好的发展。
二.对教学内容的认识。
1.教材的地位和作用。
本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值。
2.教材处理。
基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。
通过本节课的教学,我力争达到以下教学目标:
3.教学目标。
(1)知识技能:
借助自身熟悉的事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。
(2)数学思考:
通过对较小的数的问题的学习,寻求科学的记数方法。
(3)解决问题:
能解决与科学记数有关的实际问题。
(4)情感、态度、价值观:
使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。
4.教学重点与难点。
根据教学目标,我确定本节课的重点、难点如下:
重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。
难点:感受较小的数,发展数感。
三.教法、学法与教学手段。
1.教法、学法:
本节课的教学对象是七年级的学生,这一年级的学生对于周围世界和社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。
因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。
2.教学手段:
1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。
2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。
四.教学过程。
(一).复习旧知,铺垫新知。
问题1:光的速度为300000km/s。
问题2:地球的半径约为6400km。
问题3:中国的人口约为1300000000人。
(十).教学设计说明。
本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。
高三数学教案篇十
教学目标:
1、知识与技能:
1)了解导数概念的实际背景;
2)理解导数的概念、掌握简单函数导数符号表示和基本导数求解方法;
3)理解导数的几何意义;
4)能进行简单的导数四则运算。
2、过程与方法:
先理解导数概念背景,培养观察问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程及运算,培养解决问题的能力。
3、情态及价值观;
让学生感受数学与生活之间的联系,体会数学的美,激发学生学习兴趣与主动性。
教学重点:
1、导数的求解方法和过程;
2、导数公式及运算法则的熟练运用。
教学难点:
1、导数概念及其几何意义的理解;
2、数形结合思想的灵活运用。
教学课型:复习课(高三一轮)。
教学课时:约1课时。
高三数学教案篇十一
【教学目标】:
(1)知识目标:
通过实例,了解简单的逻辑联结词“且”、“或”的含义;
(2)过程与方法目标:
(3)情感与能力目标:
在知识学习的基础上,培养学生简单推理的技能。
【教学重点】:
通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容。
【教学难点】:
简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断。
【教学过程设计】:
教学环节教学活动设计意图。
情境引入问题:
下列三个命题间有什么关系?
(1)12能被3整除;
(2)12能被4整除;
知识建构归纳总结:
一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,
记作,读作“p且q”。
引导学生通过通过一些数学实例分析,概括出一般特征。
1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。学习使用逻辑联结词“且”联结两个命题,根据“且”的含义判断逻辑联结词“且”联结成的新命题的真假。
2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。
归纳总结:
当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,
学习使用逻辑联结词“且”改写一些命题,根据“且”的含义判断原先命题的真假。
引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。