总结可以帮助我们更好地规划未来的发展方向和目标。总结不仅要展示成果,还要提出自己的反思和改进方案。通过阅读以下小编为大家整理的总结案例,相信你会对如何写好总结有更深入的认识。
高中数学篇一
教学目标:
1、把图形进行分类整理,并认识图形的类别特征。
2、动手实践,体会平行四边形和三角形的性质。
3、通过直观操作来感受和体验各种图形的性质。
教学重点:把图形进行分类整理,并认识图形的类别特征。
教学难点:动手实践,体会平行四边形和三角形的性质。
教学过程:
一、创设情境,谈话引入。
师:同学们,我们已经认识了一些图形,现在一齐来回忆一下,都有哪些图形。(教师让学生说说桌面上的图形)。
二、探索新知,小组学习。
师:这些图形现在准备要搬家了,我们可以根据图形的特征帮助它们分类搬进这两间屋子里吗?(小组讨论,并说说理由)。
生:按立体图形和平面图形来分。生:按图形是否有角来分。……。
师:你们都说的很好,看看我们的好朋友淘气是怎样分的。他也和我们一样把立体形和平面图形分开。但这时平面图形有话要说了,嗯,我们听听他们说些什么。
课件说:我们的屋子里有两间房子,你们可以把我们进行分类看看住哪间房子吗?
师:既然平面图形这样说了,我们的同学可以帮帮它把桌面上的平面图形再次分类吗?
生:按图形是否线段围成来分。生:按图形是否圆来分。
师:同学们真厉害,在这么短时间就帮平面图形解决这么多难题。
课件说:aaa等等,杨老师,我还有一个问题说同学们帮帮我啊!
师:啊!你还有问题呀,同学们,帮不帮他好呢?生:帮。
师:那你快说呀?
课件:你们已经帮我们分了房间,但是要两个图形睡一张床呀!你们可以再帮我们分类吗?
师:既然这样我们就帮帮它吧?翻开书本第22页,用铅毛把这四个图形进行分类画在圈里。
生:我是按它是否直角来分。
三、联系生活,探索图形特点。
师:再看看这一幅电动铁门是什么图形。生:平行四边形。
师:其实在我们生活中很多运用了三角形和平行四边形。谁可以说说你在哪里见过呢?(小组讨论)。
生:窗口是平行四边形生:红领巾是三角形。
师:哪三角形和平行四边形你们喜欢哪一个呢?利用桌面上的小棒拼出你喜欢的图形。(找一个拼三角形的学生)。
师:这位同学是拼成三角形的,你可以把这三角形的边拉一拉吗?你发现了什么?
生:我发现这个图形具有稳定性。
师:还有没有同学拼其它图形的。(找一个拼四边形的)。
师:你可以把这个平行四边形的对角拉一拉吗?你发现了什么?
生:一拉就变形了。所以四边形具有不稳定性。
师:噢,原来是这样子的.,那老师给多一条棒给你可以把这个平行四边形固定起来,让它不变形吗?说说理由。
生:我在中间多加一条棒它就不会动了。因为形成三角形就具有稳定性。
生:不是,因为……。
四、课堂小结。
今天的课已经上完了,上这节课上得开心吗?哪开心我就要问一下你们,你觉得这节课掌握了什么知识呢?你觉得哪一个小组表现最好,好在哪里呀!
今天我们学习了按图形的特征进行分类,希望同学们以后遇到这些图形都可以找出它的特点。最后谢谢各位同学帮助图形搬了一间舒适的家。
高中数学篇二
首先必须承认高中数学相比于初中数学难度肯定要大很多,因为高考毕竟为了给国家选拔人才,而且中考也已经进行一轮筛选了,所以不再像初中是全体再比,而是以前的80%在竞争,相对而言压力肯定会比以前大一些,这是不言而喻的,但真的到了像上面形容的那种程度吗?实事求是,没有那么夸张。主要是初中数学和高中数学相比大不相同,需要学生扭转过来,尤其是对于刚进入高中的高一新生。
第一步,要调整自己的学习心态。对于陌生的东西不是惧怕,而是学会用新的思维去理解它。高一学生刚开始学习“集合”时都没太大问题,因为高中对于这块涉及的很浅,只限于认识它熟悉它的基本规则即可。加上其中有比较多的实例,学生容易代入。而函数则被许多学生奉为恶魔般的存在。主要因为它不仅抽象没代入感,而且这块往深处学习了,(毕竟简单的认识,在初中已经学习了,初中的一次函数,二次函数和反比例函数)。所以相较而言它属于更深入的研究,以前的方法和思维也要发生很大的改变,而逃避困难又是人的本能,且有相当大一部分同学觉得它实在深奥,没有能力理解,所以难免会觉得难受。但只要智力没有问题,你愿意去了解它,这都不是问题。当然这种了解是在心态平和的基础上去了解它的规则和思想,而不是带着它如此抽象如此难的思想桎梏。
第二步,我们要知道高中数学的知识特点。相较于初中,高中的知识点更加集中,对于灵活应用的能力要求也更高。所以,学会一个知识点的评判标准是能触类旁通,即不仅会做一道题,而且会做一类题,学会题型分析,倘若还能揣测出题者的意图,那么你的能力将更上一层楼!
第三步,在做好上面两步后,我们还要及时复习、总结和巩固练习。因为在高中,懂了不一定就会做,做了也不一定能做对。所以,课后的总结巩固和笔记整理十分必要。
一旦能够意识到以上这些问题,努力修正学习方法和态度,那么后面的学习你将会顺畅很多。学习也是一路都在升级打怪兽,在解决一个个问题后,我们自己的学习能力思维等各个方面都将会有很大的提高,以后碰到问题也有解决问题的方法和经验,这本身就是一个提升的过程。所以孩子们加油吧!
高中生数学不好,大部分情况不只是高中生数学不好,而是这个学生,初中,小学也不太好,为什么数学不好,核心的核心,是因为这个学生很有可能一开始就不喜欢数学。
当然了,一个学生一开始就比较喜欢数学,但是成绩还是不好,那是后话,我后面会专门讲解这个问题如何来解决。我们先来解决的是对数学的兴趣问题。
所以,作为父母也好,学生自己也好,你要找到学习数学的目的,数学本身又这么枯燥无味,强迫着学数学本身就很痛苦。
我的数学激情,是在小学3年级的时候被激发出来的,那个时候小学课本,课后都会有一些思考题,放学的时候,老师说,大家可以回家做一下。我本身是不喜欢数学的,但是那个思考题蛮好玩的,我就会去做了一下,第二天给老师看了,竟然答案是对的。
好了,重点来了,我的数学老师在课堂上,竟然当着所有同学的面表扬了我!即便我现在教书多年,每次回忆起那个时候的场景,还是会有激动的心情,一个学生,被当众表扬,会得到物质给与不了的精神鼓舞,当天回去,把教科书背后的所有思考题,挨着全部做了,很多知识点,我是不会做的,毕竟还没有学到那里去,为了解答那些问题,我硬着头皮进行了预习。
第二天,数学老师惊呆了,这样一个调皮捣蛋的同学,竟然突然如此热爱学习起来了。最开始的开始好好学习,是因为得到了老师的鼓励,与此同时我的信心得到了提高,任何一个学生,都是希望得到老师和家长,以及同学的认可的,这会在内心上得到满足。再到后来,我是因为竞争才好好学习,我希望每次考试数学都考第一名,我不想成为第二名或者第三名,这与很多父辈的之所以学习是为了养家糊口,为了生存,为了竞争,比别人过得好等等,我们都可以理解为我们的痛点。
如果学习能够满足学生的痛点,那他就会努力去学习。这就好比一个喜欢玩游戏的学生,你不需要督促他,他自己就知道好好研究这个游戏,以及反复操练,因为他渴望在游戏中赢得比赛。
好了,如果你不喜欢数学,你讨厌数学,就好比你讨厌一个女生,但是你却希望让她成为你的女朋友,这可能么,这不可能,你需要做的事情有两个:
1、你可以选择一个你喜欢的女生,然后去努力让她成为你的女朋友;。
那么我们类比到我们的学科可以这么来理解:
1、你可以找到你真正喜欢的方向,然后发扬光大;。
备注:一般而言,这适合于高考结束后,选自己真正喜欢的专业,而不是逃避数学这个科目。
2、发现数学对自己真正感兴趣的方向有用的地方,以此支撑自己爱上数学;。
举例:曾经我有一个学生,酷爱汽车,但是,自己就是比喜欢数学,比较喜欢物理一点。
我就会告诉他,你喜欢汽车,那你以后就想做一个研究汽车的职业或者兴趣,至少,你需要进入一个非常厉害的相关的学校,与此同时,物理是汽车的基础,而数学是物理的基础,你想做这个事情,而且做的很好,如果你进的大学就是很差的,你有机会进入一个汽车领域好的公司么,有机会,但是难度极大。
学生一想,好像是这个道理,硬着头皮,也要把数学学好,你会发现一个逻辑,他学好数学,不是因为家中逼他学,而是因为他为了以后把自己喜欢的事情发扬光大,被迫必须把数学学好,于是是主动的学习,不是被动学习。
主动学习,与被动学习差距太大了,吸收程度,遗忘程度,都是有千差万别的,这就是我一再强大兴趣的重要性,即便我在这里讲一万种高中数学学习方法,孩子不想学,那也没辙。
有一个经典的试验,把学生分为两组,一组是喜欢即将学习的内容,一组是不喜欢学习的内容,两组同学同样的0基础开始学习这个知识,学完经常测试,喜欢这个内容的比不喜欢学习这个科目的分数搞出非常大一截。
然后第二天来进行原本知识考察,不喜欢这个知识的同学,听了同样老师的课,基本上都遗忘了,而另外一组,大部分都能够答出老师的疑问。
所以,如果兴趣,或者说学习动机这个问题没有解决好,学习数学的方法也好,课程也好,习惯也好,老师也好,再好都是事倍功半的结果。
高中数学篇三
高中数学的教学目的是使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和技能,培养学生的运算能力。《立体几何》作为高中数学的重要组成部分,既是教学中的重点,又是教学中的难点。
一、上好第一堂课,激发学生学习《立体几何》这门课的兴趣。
浓厚的学习兴趣不仅可以使学生积极主动地从事学习活动,而且学习起来还会心情愉快,能够做到全神贯注,长期坚持从而形成一种终身的学习习惯。另外,学生在学习立体几何之前,对立体几何普遍有一种畏惧心理。
所以立体几何的第一堂课是否能抓住学生,调动学生的学习积极性,激发学生学习立体几何的兴趣,非常关键。
二、帮助学生建立空间概念。
学生由于受学平面几何的思维定势的影响,在学习立体几何时,要建立起空间概念,有一定的困难,只有尽早解决这个问题。才能学好立体几何。
1.识图与画图。
在开始学习立体几何时,要让学生特别注意空间图形在平面内的画法,切不可把虚线再当作平面图形中的辅助线,要把平面图形中的角、线段与空间实例相对照。
2.亲自动手,制作模型。
在解决有些问题时,可以把某些元素用实物来表示。对于一些折叠图形问题,学生不妨动手自己折一折,观察分析位置关系的变化,这样就容易看清元素间的位置关系。
三、培养学生空间想象的能力。
在立体几何教学中,空间想象能力是重要的数学能力之一,也是一种基本的数学能力。它强调对图形的认识、理解和应用,既会用图形表现空间形体,又会由图形想象出直观的形象,立体几何承担着培养学生空间想象能力的独特功能。
1.教会学生看空间几何体。
立体几何的概念教学要从实例引入,对图形的观察、分析来抓住它们的本质特征,抽象出数学概念。
2.重视画图基本功的训练。
画出正确图形,是学生解决立体几何问题的前提和基础,画图基本功的训练,应贯穿在立体几何教学的全过程。
(1)教师利用教具、实物,让学生观察,分析抽象出概念后,然后画出相应概念的直观图。
(2)边说边画,让学生看到教师画图的过程,或者让学生在练习本上与教师同步绘制,那种把图形事先画在小黑板上的作法,在教学很长一段时间内是不宜使用的。
(3)让学生把教材中的示范图形,储存在头脑中。
四、证明题的证题思路。
立体几何中,证明题占有很大的比例,即使在计算题中,也需要先通过证明以确定元素间的位置关系,然后再进行计算。所以尽快找到证题思路,是解决立体几何题的关键。
1.掌握证题必备的知识。
首先掌握线线、线面平行、垂直的判定定理与性质定理本身,对定理本身揭示的内涵有深刻的理解,能熟练画出图形及写出定理的题设、结论。在这些基础上,还应掌握定理的结构及内在的联系。
2.分析证题思路的“十二字令:看结论、想判定;看条件,定取舍”
看结论:指的是命题欲证结论是哪一种结论,是线线平行还是线面垂直。
想判定:指的是依据结论,思考证明该结论的方法有哪些。
看条件,定取舍:指的是证明结论的方法有多种,要根据题目的具体条件来决定选用何种判定定理或性质定理。
3.走好证题起始第一步。
一个复杂的命题,其证明过程一般要经过从低维到高维的渐进过程。即从线线关系推证出线面关系,再从线面关系推出面面关系。
五、坚持转化思想。
最明显的是空间的三种角:异面直线所成的角、斜线和平面所成的角、二面角的度量,都是转化为平面几何中的角来解决。另外,定理的构成明显地显示出“低维”与“高维”、“简单”与“复杂”的转化。如判定定理的构成,遵循线线到线面再到面面的原则。逐步从简到繁,而性质定理的构成,则遵循面面到线面再到线线的原则,它显示出在整体认识的基础上,进一步研究它的局部与个体。
高中数学论文立体几何篇三:立体几何教学中数学思想的培养。
摘要:本文结合具体例子,从转化思想、分类思想、割补思想三个方面论述了培养学生数学思想的方法。
关键词:立体几何;数学思想;转化;分类;割补。
数学教学中有两条线,一条是明线,即数学知识;一条是暗线,即数学思想。传统教学重“明”轻“暗”,即只重视知识的传授,轻视数学思想的培养。这种教学上的弊端,致使学生听得懂做不出,这在立体几何教学中尤为明显,所以在立体几何教学中重视渗透数学思想,是突破学习障碍的关键,笔者认为立体几何教学中应着重注意渗透以下几种数学思想。
一、转化思想。
在课堂教学中,有意识地、不失时机地渗透分类思想,不但可将复杂问题分解为简单问题,还可提高学生周密地思考问题、完整地解答问题的能力。
三、割补思想。
割补思想是立体几何中一种重要的思想方法,在求解几何体体积问题时应用更为广泛。割补法重在割与补,恰当地割补空间图形往往使问题明朗化,化繁为简、化暗为明、化难为易,尤其遇有运用常规思考方法不易达到目的的题目,割补法往往显示出独到的功效。
割补方法是很简单、很直观的思想方法,但作用很大。教学中渗透割补思想,既可开阔学生的解题思路,也可达到事半功倍的效果,还可将不可知的数学问题分割成具体简单的问题。
数学教学中,传授数学知识的同时,注意渗透数学思想,对培养学生抽象思维能力、空间想象能力、逻辑推理能力、综合能力、分析和解决问题的能力、计算能力都是大有益处的。
高中数学篇四
1、在注重基础的同时,又要将高中数学合理分类。分类其实很简单,就是按照课本大章节进行分类即可。高中数学复习过程中,速度快、容量大、方法多,特别是基础不好的同学,会有听了没办法记,记了来不及听的无所适从现象,但是做好笔记又是不容忽视的重要环节,那就应该记关键思路和结论,不要面面俱到,课后整理笔记,因为这也是再学习的过程。
2、再谈做题,做题大家都认为是高三复习的主旋律,其实不是的。不论对于哪种层次的学生,看题思考才是复习数学的主旋律。看高中数学题主要是看你不会做的题,做错的题,尤其是卡住你的那一个步骤。为什么答案中这道题这个步骤这么写,为什么用这个公式。这个公式是从那几个条件确立的,它的出现时为了解决什么问题。这是思考方向。
高中数学篇五
(2)理解直线与二元一次方程的关系及其证明。
:计算机。
:启发引导法,讨论法。
下面给出教学实施过程设计的简要思路:
(一)引入的设计。
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次。
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次。
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”。
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计。
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。
学生或独立研究,或合作研究,教师巡视指导.。
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…。
思路二:…。
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。
当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。
当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程。
至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。
同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式。
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?
师生共同讨论,评价不同思路,达成共识:
(1)当时,方程可化为。
这是表示斜率为、在轴上的截距为的直线。
(2)当时,由于、不同时为0,必有,方程可化为。
这表示一条与轴垂直的直线。
因此,得到结论:
在平面直角坐标系中,任何形如(其中不同时为0)的二元一次方程都表示一条直线。
为方便,我们把(其中不同时为0)称作直线方程的一般式是合理。
【动画演示】。
演示“直线各参数”文件,体会任何二元一次方程都表示一条直线。
(三)练习巩固、总结提高、板书和作业等环节的设计。
略
高中数学篇六
高中数学趣味竞赛题(共10题)
5个高中生有,她们面对学校的新闻采访说了如下的话:
爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”
玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”
千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?
有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。
听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。
一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。
那么,请问原来的算式是什么样子的呢?
用16根火柴摆成5个正方形。请移动2根火柴,
使
正形变成4。
把正三角形的纸如图那样折过来时,角?的度数是多少度?
求星形尖端的角度之和。
丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。
结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?
用折纸做成45度很简单是吧。那么,请折成15度,你会吗?
高中数学篇七
2、能识别和理解简单的框图的功能。
3。、能运用三种基本逻辑结构设计流程图以解决简单的问题。
1。、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。
2。、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。
一、问题情境。
1、情境:
某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为x。
其中(单位:)为行李的重量.。
试给出计算费用(单位:元)的一个算法,并画出流程图。
二、学生活动。
学生讨论,教师引导学生进行表达。
解算法为:
输入行李的重量;
如果,那么,
否则;
输出行李的重量和运费.。
上述算法可以用流程图表示为:
教师边讲解边画出第10页图1—2—6.。
在上述计费过程中,第二步进行了判断.。
1、选择结构的概念:
先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。
(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。
3、思考:教材第7页图所示的算法中,哪一步进行了判断?
高中数学篇八
摘要:立体几何是研究空间图形的性质及其应用的一门学科,学好立体几何应注意下面几个环节。
关键词:立体几何;作图;语言互译。
一、立体几何入门从作图开始。
空间图形是立体几何特有的一种语言形式,因为很多时候,看题目里的文字,感到模模糊糊,画个图一看,就清清楚楚了。
在初中学平面几何时,已经形成了强大的“思维定势”,结果对于立体几何图形也往往不加分析地从平面几何的角度来理解空间图形问题,常把空间图形看成平面图形,以至于妨碍三维空间的建立。必须下大力气,尽快打破平面图形的思维习惯,逐渐熟悉根据纸上画的图形而想象出物体在空间的真实形状。反过来,又能逐步学会将空间的三维物体用线条直观地在一张纸上表现出来。
为此,可采用实物,多角度地“写生”,多画图,才能从中悟出空间图形和平面图形的差异和联系,更合理地画出空间图形。例如,可以对长方体进行观察,摆出不同的位置,从各种角度画出图形,看从哪些角度画出的图形更有立体感;又如,三个面在空间中相交的各种情况,是立体几何图形的基础,可以用硬纸片做模型,摆出各种不同情况的空间位置,逐一画图联系,打好绘制基本图形的功底。
二、分清平面几何与立体几何的联系与区别。
立体几何与平面几何有着紧密的联系。因为立体几何中的许多定理、公式和法则都是平面几何定理、公式和法则的推广,处理某些问题的方法也有许多相似之处。但必须注意的是,这两者又有着明显的区别,有时平面几何知识的局限性会对立体几何学习产生一些干扰阻碍作用,如果仅凭平面几何中的经验,把平面几何中的结论套用到空间中,就会产生错误。因此,在解题时需要特别注意的是,并非所有的平面几何结论都可以推广到空间,必须在证明所研究的图形是平面图形之后,才能引用平面几何的结论。
三、三种语言互译十分必要。
立体几何中每个符合都有其固定的意义和用法,如果不明确它们的意义和使用范围,就经常会出现一些错误。要提高立体几何的表达能力,应注意将所学的定义、公理、定理、命题等文字表达的语言译成图形语言和符号语言,这样能提高表达能力和空间想象能力。
立体几何中的定义、定理等大多数是用文字语言表达的,在解题时就需要把它们译成符号语言。解题中的分析过程一般用文字语言思考,但解题过程必须用符号语言才能简捷、准确地表达。与此同时,由于把文字语言译成符号语言后,形式上得到了简化,原问题也就变得抽象了。因为符号语言和直观图形有很大的差异,实际上直观的图形语言才是立体几何最本质的东西,所以,要想把文字语言与符号语言有机结合,离开图形语言这座桥梁是行不通的。将文字语言翻译成符号语言,或者将符号语言翻译成文字语言,都要借助于图形语言思考定位。由此可见,图形语言对于立体几何来说是一个十分重要的工具。这三种语言之间的关系是:文字语言图像语言符号语言。也就是说,在将文字语言与符号语言互译的过程中就已包含了文字语言与图形语言的互译,以及图形语言与符号语言的互译。
高中数学篇九
高中数学是许多高中生迈不过的一道“坎”学好数学非常重要,下面有关三点学好高中数学的方法供各位高中生参考。
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些类似于紫尖教育出品的“小学课后练习题库”手机应用(安卓市场搜索下载)从主科目:英语、语文、数学进行课外练习作业,也可以借助紫尖教育出品的其他类似于“儿童口算益智游戏”、“小数保卫战”、“余数战争”等等以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。
特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
高中数学篇十
(6)在知识学习的基础上,培养学生简单推理的技能.
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平. ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
(教师利用投影片,和学生讨论以下问题.)
例1 判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.
2.讲授新课
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的语句叫做命题.
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”.
“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.
对“或”的理解,可联想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 且 ;也可以 且 ;也可以 且 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.
对“且”的理解,可联想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 这两个条件都要满足的意思.
对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .
命题可分为简单命题和复合命题.
不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
(4)命题的表示:用 , , , ,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
我们接触的复合命题一般有“ 或 ”、“ 且 ”、“非 ”、“若 则 ”等形式.
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
对于给出“若 则 ”形式的复合命题,应能找到条件 和结论 .
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
3.巩固新课
例2 判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.
(1) ;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若 ,则 .
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
例3 写出下表中各给定语的否定语(用课件打出来).
若给定语为
等于
大于
是
都是
至多有一个
至少有一个
至多有个
其否定语分别为
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有 个”的否定语是“至少有 个”.
(如果时间宽裕,可让学生讨论后得出结论.)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)
4.课堂练习:第26页练习1
5.课外作业:第29页习题1.6
高中数学篇十一
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法。
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观。
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
(一)创设情景,揭示课题。
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知。
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本p8,习题1.1a组第1题。
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化。
练习:课本p7练习1、2(1)(2)。
课本p8习题1.1第2、3、4题。
五、归纳整理。
由学生整理学习了哪些内容。
六、布置作业。
课本p8练习题1.1b组第1题。
课外练习课本p8习题1.1b组第2题。
(1)掌握画三视图的基本技能。
(2)丰富学生的.空间想象力。
2.过程与方法。
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观。
(1)提高学生空间想象力。
(2)体会三视图的作用。
重点:画出简单组合体的三视图。
难点:识别三视图所表示的空间几何体。
1.学法:观察、动手实践、讨论、类比。
2.教学用具:实物模型、三角板。
(一)创设情景,揭开课题。
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
(二)实践动手作图。
2.教师引导学生用类比方法画出简单组合体的三视图。
(1)画出球放在长方体上的三视图。
(2)画出矿泉水瓶(实物放在桌面上)的三视图。
学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本p10,图1.2-3)。
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习。
课本p12练习1、2p18习题1.2a组1。
(四)归纳整理。
请学生回顾发表如何作好空间几何体的三视图。
(五)课外练习。
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法。
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观。
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
重点、难点:用斜二测画法画空间几何值的直观图。
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规。
(一)创设情景,揭示课题。
1.我们都学过画画,这节课我们画一物体:圆柱。
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知。
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图。
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法。
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影。
投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本p16练习1(1),2,3,4。
三、归纳整理。
学生回顾斜二测画法的关键与步骤。
四、作业。
1.书画作业,课本p17练习第5题。
2.课外思考课本p16,探究(1)(2)。
高中数学篇十二
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣.
教学重点。
1.对圆锥曲线定义的理解。
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程。
教学难点:。
巧用圆锥曲线定义解题。
【设计思路】。
(一)开门见山,提出问题。
一上课,我就直截了当地给出——。
例题1:(1)已知a(-2,0),b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)线段(d)不存在。
(2)已知动点m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是()。
(a)椭圆(b)双曲线(c)抛物线(d)两条相交直线。
【设计意图】。
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的.认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】。
入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。
(二)理解定义、解决问题。
高中数学篇十三
以前上课时,我经常只顾自己的想法,觉得讲的题目越多越好,很少顾及学生的思维与感受。解题过程也是能省就省,但是慢慢地,发现学生上课听得懂,自己做却不会,甚至有些学生渐渐的对数学的学习失去了信心。基于对以上问题的分析和认识,经过实践,我得到以下几点教学感悟:
1.关注学生的“预习”,淡化课堂笔记。
2.反思教学势在必行。
教学中能否取得满意的教学效果,关键在于教师的教学观念和教学方式。从我的亲身感受来说,这不是一蹴而就的事情。需要教师有极大的职责心和耐心,不断加强理论知识的学习,更重要的是加强教学反思,即教师以自己的教学活动为思考对象,对自己在教学中所做出的行为以及由此所产生的结果进行审视和分析的过程。
如果说老师去反思是为了更好的教,那么学生去反思是为了更好的学,并且还是我们整个教学过程的重中之重。那么,高中学生到底怎样进行反思?教学中我始终带着这个问题,思索自己的每一节课的教学设计,学生的学习方法、习惯如何养成?怎样进行反思才能取得理想的学习效果。我的指导教师对于学生的分析给了我很大的帮忙。
高中数学篇十四
(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法。
学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观。
(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
重点、难点:用斜二测画法画空间几何值的直观图。
1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规。
(一)创设情景,揭示课题。
1.我们都学过画画,这节课我们画一物体:圆柱。
把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知。
1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。
练习反馈。
根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图。
教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法。
(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体abcd-a’b’c’d’的直观图。
教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。
(2)投影出示几何体的三视图、课本p15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。
4.平行投影与中心投影。
投影出示课本p17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。
5.巩固练习,课本p16练习1(1),2,3,4。
(三)、归纳整理。
学生回顾斜二测画法的关键与步骤。
(四)、作业。
1.书画作业,课本p17练习第5题。
高中数学篇十五
掌握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】
经历三角函数的单调性的探索过程,提升逻辑推理能力。
【情感态度价值观】
在猜想计算的过程中,提高学习数学的兴趣。
【教学重点】
三角函数的单调性以及三角函数值的取值范围。
【教学难点】
探究三角函数的单调性以及三角函数值的取值范围过程。
(一)引入新课
提出问题:如何研究三角函数的单调性
(四)小结作业
提问:今天学习了什么?
引导学生回顾:基本不等式以及推导证明过程。
课后作业:
思考如何用三角函数单调性比较三角函数值的大小。