当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,并把这些用文字表述出来,就叫做总结。优秀的总结都具备一些什么特点呢?又该怎么写呢?这里给大家分享一些最新的总结书范文,方便大家学习。
探索图形教学反思总结探索图形教后反思篇一
人教版小学数学五年级下册第三单元《长方体和正方体》综合与实践活动课,教材第44页:探索图形。
在认识长方体和正方体后,教材安排了“探索图形”的综合与实践活动。目的是让学生运用所学过的正方体的特征等知识,探索由小正方体拼成的大正方体中各种涂色小正方体的数量,发现其中蕴含的数量上的规律,以及每种涂色小正方体的位置特征,培养学生的空间想象力和推理能力、体会分类计数的思想。
原研究内容是这样呈现的:
让学生综合运用正方体的特征等相关知识,借助已有的学习经验,在观察、想象、推理、交流等活动中,把握问题的共性,从而发现三面涂色、两面涂色、一面涂色的小正方体的个数与大正方体顶点、棱、面之间的关系,使学生在探究规律的过程中,积累数学活动经验,发展空间观念。
正是由于各个小正方体在大正方体上的位置不同,所以它们涂颜色面的个数不同。研究小正方体涂色面的规律,要分类整理各种小正方体的原来位置,与刚刚教学的正方体知识有联系,对空间想象力提出了新的内容与要求,有益于学生空间观念的发展教材编排注重动手实践与自主探索,促进学生空间观念的发展。
学生在第一学段初步认识了立体图形,有一定的认识基础。同时也已经掌握了平面图形的知识,为学习立体图形作好了准备。本单元前面已经学习了长方体、正方体的特性以及两种立体图形的表面积、体积的计算。
由平面图形扩展到立体图形,是学生发展空间观念的一次飞跃,教学中应该注重学生的学习体验、动手操作、总结归纳,让学生在探索活动中掌握知识的内涵,转化为自身的能力。
教材以棱长为2、3、4的正方体入手研究规律,规律研究的最小数据棱长为2开始研究,从学生的实际反馈发现棱长为2的正方体对涂色图形的位置特征缺乏直观的感受,而棱长3、4的表格填写对规律的发现还有点薄弱。所以本课我在棱长为2教学时,切开让学生直观感受,里面的没有涂色。从棱长为3的正方体为切入点,通过观察魔方让学生初步感受不同涂色情况小正方体位置特征,再通过对棱长为4.5的正方体图形的涂色研究、数据填写,通过实验操作经历从具体到表象再到抽象的过程,丰满学生的规律发现探究之旅。
1、加深对正方体特征的认识和理解。
2、通过观察、列表、想象等方式探索、发现图形分类计数问题中的规律,体会化繁为简解决问题的策略,培养学生的空间想象力。
3、体会分类、数形结合、归纳、推理、模型等数学思想。
4、在相互交流中,学会倾听他人意见,及时自我修正,自我反思,增强学好数学的信心。
教学重点:学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。
教学难点:探索规律的归纳方法。
多媒体课件,三阶魔方、活动任务单。
(一)复习导入,提出问题
复习正方体知识
1、魔方大多数是正方体,正方体有哪些特征?
教师:这也就是拼成了棱为几的正方体。你们用到的小正方体的总块数是?
教师总结:我们用棱长为1厘米的小正方体,可以拼出棱长为2厘米的正方体,也可以拼出棱长为3厘米、4厘米、5厘米......的正方体。
引出问题
1、教师:这是棱长为几的正方体?它是由多少个小正方体组成的?
师总结:看来要想知道准确的答案并不是一件轻松的事情,我们不妨从一个简单的图形入手,一起来探索规律(板书课题,探索图形)。
[设计意图]:创设问题情境,在解决这个问题的过程中,让学生初步体会分类计数,深刻感受到原有的经验和方法解决问题有困难,产生认知冲突,促使学生积极主动地思考解决问题的方法,深刻体会化繁为简、探索规律解决问题的意义,积累解决问题的数学学习经验。同时,复习正方体的有关知识可以为后面的学习铺垫。
(二)活动研究,探索规律
1、探究棱长为2时,各种涂色小正方体的个数。
2、探究棱长为3时,各种涂色小正方体的个数。(利用正方体实物进行探究)
活动一:同桌两人合作,借助桌面上的三阶魔方进行观察,完成任务单活动(一)。
①在立体图形上找出三面涂色,两面涂色,一面涂色的小正方体的位置。
②数一数,算一算,每类小正方体各有多少个?
③汇报交流
教师:刚才你们观察到三面涂色的在的顶点处,两面涂色的在棱上,一面涂色的在面上。
四人一组,小组合作研究,验证猜想。
[设计意图]:探究大正方体棱长为3时不同涂色小正方体的个数,学生利用学具能比较容易地找到答案。但本环节的意图并不在此,而是以探究不同涂色小正方体的个数为主体,旨在让学生在探究过程中具体感受不同涂色的小正方体在大正方体上的位置,为找不同涂色小正方体的个数与大正方体棱的等分数的关系扫清障碍。
活动二:四人小组继续探究,当棱长为4,棱长为5时,每类小正方体的涂色情况,并快速填写任务单(二),看一看你能否发现规律。
学生汇报数据。
探究对应的`数据如何得来的,验证答案。
[设计意图]:这一环节在学生抛开学具的基础上探寻不同涂色小正方体的个数,表面上看仿佛是上一环节在量上的增加,其实也有质的变化。上一环节重在让学生感受不同小正方体所在的位置,至于答案是学生数出来的还是算出来的,不作要求;而这一环节,要引导学生在观察的基础上,用想象、推理加计算来找答案。由数出来到算出来,规律就在一步步的探究过程中悄悄萌芽。
(三)比较归纳,概括规律
教师:当小正方体的个数足够多时,我们再继续拼下去,这时棱长可以怎样表示呢?(用字母表示)
教师:回顾一下刚才的探究过程,你们觉得哪组数据最好找?
为什么三面涂色的小正方体最好找,你有什么发现?
再来回顾下两面涂色的小正方体,它们有什么相同的地方?
没有涂色的小正方体有什么规律呢?生汇报。
师:没有涂色的怎样找更快,还有更好的方法吗,他们都位于大正方体的什么位置?那就是需要我们揭开它表面的一层,一起揭开它神秘的面纱,我们一起来观察一下。(ppt播放)
[设计意图]:回顾总结,是本节课的一大亮点,不能简单理解为学生认识到什么就总结什么,而应该在学生认识的基础上顺势而为,作适当的延伸和提高,不仅使学生有机会感悟研究规律背后的数学思想,为以后的数学研究做好铺垫,也实现相关研究方法和数学思想由“外显”变为“内化”。
回到棱长为9。
师:现在你们能解决棱长为9时,每类小正方体的块数吗?生汇报数据。
(四)课堂小结,总结提升。
回顾刚才探索和发现的过程,说说你的体会。
其实刚才的探究方法,就是数学上解决问题,常用的方法叫做“化繁为简”,在以前的学习中,我们也用到了这种学习方法,让我们一起回顾下吧。(ppt播放)
在今后的学习中,这位老朋友还会陪伴我们解决更多的问题。
老师把爱因斯坦的这句名言送给大家,希望在今后的学习中,这句话能激励着你们不断探究。
探索图形教学反思总结探索图形教后反思篇二
本课教学重点是使学生初步认识轴对称图形的一些基本特征,难点是掌握判别轴对称图形的方法。
纵观这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点。学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦。
1.对能否列举出生活中的一些对称现象,能否根据轴对称图形的基本特征“做”出一些轴对称图形。都能给与恰当的评价。
2在评价过程中,关注学生的.情感,价值观。
1、练习的层次性。在设计教案时我就在思考如何在练习中体现层次性,一直没有能够得到满意的解决。
1、导入自然贴近学生生活,但有些平淡。在处理本节课的重点时,处理得过急没有注意到个别差异。
3、教师的语言不够丰富,对学生激励性的语言不够,希望以后在这方面能做得更好一些。
本课的教学是了解生活中的对称现象,认识轴对称图形的一些基本特征,能正确识别轴对称图形,能画出轴对称图形的对称轴,会设计简单的轴对称图形;通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生动手、创新的能力;在认识、制作和欣赏轴对称图形的过程中,感受物体和图形的对称美。
从整个过程来看,《轴对称图形》的教学是完整的,我主要分成了:激趣导入新课,引出课题、合作探究、练习、小结和欣赏对称图形这五个部分。也许这就是我进步的一点地方了。
在各位老师真诚的点评下,我对自己的这节课有了更好的认识:
1、最大的缺点,重点不突出。整节课有点像完成任务,很快就过去了。
2、剪对称图形环节,是不是可以直接让学生看书,再剪。
3、练习讲解中,应先讲解简单的,再讲复杂的;另外,应重视学生课堂上出现的错误。
4、最后的欣赏环节是不是可以改为让学生自由发挥,再一次剪对称图形。
一个人的力量是有限的,希望自己在教学的道路上得到更多这样的点评,也能够在这样的点评中不断进步。
探索图形教学反思总结探索图形教后反思篇三
1、给学生观察和思考的时间。所以我把探索图形中的问题,提前布置给大家,让学生在课前完成课本第44页的表格。
2、可以让学生借助一定的工具进行观察,例如借助常见的魔方(三阶魔方或者四阶魔方),直观地进行观察、探究。
3、给学生充分的自信。不要急于评判学生的答案对错,对于探究问题,我们最主要的是让学生体验探索过程,掌握解决问题的方法,孩子们不可能自己在家看看就会了,我们要引导学生进入学习,喜欢上探究问题,而不全是评判答案的对错。
4、温故而知新。在课程刚开始,对正方体的知识进行复习,明确顶点、棱、面的概念和特点,棱长为1的小正方体组成大正方体问题,为后面的探索过程提供思路。三面涂色的小正方体在大正方体的顶点处,两面涂色的小正方体在12条棱的中间,一面涂色的小正方体在6个面的中间,没有涂色的小正方体在大正方体的中间。
5、在探究过程中,让学生产生分类思考的思想,因为对于每一个图形来说,都要考虑三面、两面、一面、没有面涂色的问题,有点混乱,如果我们就3、4、5号图形同时分析三面涂色、两面涂色问题、一面涂色问题和没有面涂色问题,是不是就有可比性,也就有了规律可循。
6、注重学生的语言素养的培养,重点是语言组织能力的培养。在归纳总结三面涂色的小正方的位置时,不少学生脱口而出“三面涂色的小正方体在大正方体的四个角上。”“四个角”说明孩子们的思维还是停留在日常的经验层面,没有上升到数学的角度看问题,尤其是学会用相关的知识进行解释,在本题中应该从正方体的知识上进行解释,“角”用“顶点”描述更加准确,“四个角?”“四个顶点?”自然而然也就更正为“八个顶点”,叙述完整:三面涂色的小正方体在大正方体的八个顶点处,一共有八个。
7、运用微课,增加趣味性,也能通过视频将大正方体进行剖开,让学生直观地对没有面涂色等问题进行观察和探索,解决问题。
8、有点遗憾:一、时间把控上,因为是综合与实践课,需要探索和归纳总结,30分钟的时间不够充分,我在课堂把控上,没有较好的利用,有时会不自觉地重复一句话或是一个问题,希望在以后的教学中,多自省,把课备好,更加熟练教学环节,努力做到不讲废话,让每一个问题问的有意义,让每一句话、指令学生都能听懂。二、没有问“有没有有四面、五面涂色的小正方体呢?当时直接进行的总结。