作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。大家想知道怎么样才能写一篇比较优质的教案吗?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
中职数学三角函数教案篇一
1、知识与技能
(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;
(2)能熟练运用正弦函数的性质解题。
2、过程与方法
通过正弦函数在r上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、情感态度与价值观
通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
重点:正弦函数的性质。
难点:正弦函数的性质应用。
投影仪
创设情境,揭示课题
同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在r上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?
探究新知
让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:
(1)正弦函数的定义域是什么?
(2)正弦函数的值域是什么?
(3)它的最值情况如何?
(4)它的正负值区间如何分?
(5)?(x)=0的`解集是多少?
师生一起归纳得出:
1.定义域:y=sinx的定义域为r
2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)
再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]
中职数学三角函数教案篇二
已知三角函数值求角(反正弦,反余弦函数)
要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出 范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。
一、简单理解反正弦,反余弦函数的意义。
由
1在r上无反函数。
2在 上, x与y是一一对应的,且区间 比较简单
在 上, 的反函数称作反正弦函数,
记作 ,(奇函数)。
同理,由
在 上, 的反函数称作反余弦函数,
记作
二、已知三角函数求角
首先应弄清:已知角求三角函数值是单值的。
已知三角函数值求角是多值的。
例一、1、已知 ,求x
解: 在 上正弦函数是单调递增的,且符合条件的角只有一个
(即 )
2、已知
解: , 是第一或第二象限角。
即( )。
3、已知
解: x是第三或第四象限角。
(即 或 )
这里用到 是奇函数。
例二、1、已知 ,求
解:在 上余弦函数 是单调递减的,
且符合条件的角只有一个
2、已知 ,且 ,求x的值。
解: , x是第二或第三象限角。
3、已知 ,求x的值。
解:由上题: 。
介绍:∵
上题
例三、(见课本p74-p75)略。
法则:1、先决定角的象限。
2、如果函数值是正值,则先求出对应的锐角x;
如果函数值是负值,则先求出与其绝对值对应的锐角x,
3、由诱导公式,求出符合条件的其它象限的角。
习题4.11 1,2,3,4中有关部分。
中职数学三角函数教案篇三
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
1、教学重点
理解并掌握诱导公式。
2、教学难点
正确运用诱导公式,求三角函数值,化简三角函数式。
“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。
1、教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。
2、学法
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。
在本节课的教学过程中,本人引导学生的学法为思考问题 共同探讨 解决问题 简单应用 重现探索过程 练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。
3、预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。
(一)创设情景
1、复习锐角300,450,600的三角函数值;
2、复习任意角的三角函数定义;
3、问题:由 ,你能否知道sin2100的值吗?引如新课。
设计意图
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。
(二)新知探究
1、 让学生发现300角的终边与2100角的终边之间有什么关系;
2、让学生发现300角的终边和2100角的终边与单位圆的交点为 、 的坐标有什么关系;
3、sin2100与sin300之间有什么关系。
设计意图
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫。
(三)问题一般化
中职数学三角函数教案篇四
1、 理解锐角三角函数的定义,掌握锐角三角函数的表示法;
2、 能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;
3、 掌握 rt △中的锐角三角函数的表示:
sina= , cosa= , tana=
4 、掌握锐角三角函数的取值范围;
5 、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。
锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。
锐角三角函数概念的形成。
一、创设情境:
鞋跟多高合适?
美国人体工程学研究人员卡特·克雷加文调查发现, 70 %以上的女性喜欢穿鞋跟高度为 6 至 7 厘米左右的高跟鞋。但专家认为穿 6 厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。
据研究,当高跟鞋的鞋底与地面的夹角为 11 度左右时,人脚的感觉最舒适。假设某成年人脚前掌到脚后跟长为 15 厘米,不难算出鞋跟在 3 厘米左右高度为最佳。
问:你知道专家是怎样计算的吗?
显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回顾直角三角形的已学知识,引出课题。
二、探索新知:
1 、下面我们一起来探索一下。
实践一:作一个 30 °的∠ a ,在角的边上任意取一点 b ,作 bc ⊥ ac 于点 c 。
⑴计算,,的值,并将所得的结果与你同伴所得的结果进行比较。∠ a=30 °时学生 1 结果 学生 2 结果 学生 3 结果 学生 4 结果 ⑵将你所取的 ab 的值和你的同伴比较。
实践二:作一个 50 °的∠ a ,在角的边上任意取一点 b ,作 bc ⊥ ac 于点 c 。
( 1 )量出 ab , ac , bc 的长度(精确到 1mm )。
( 2 )计算bc / ab ,ac / ab,的值(结果保留 2 个有效数字),并将所得的结果与你同伴所得的结果进行比较。∠ a=50 °时 ab ac bc 学生 1 结果 学生 2 结果 学生 3 结果 学生 4 结果 ( 3 )将你所取的 ab 的值和你的同伴比较。
2 、经过实践一和二进行猜测
猜测一:当∠ a 不变时,三个比值与 b 在 am 边上的位置有无关系?
猜测二:当∠ a 的大小改变时,相应的三个比值会改变吗?
3、 用理论推理
如图, b 、 b 1 是一边上任意两点,作 bc ⊥ ac 于点 c , b 1 c 1 ⊥ ac 1 于点 c 1 ,
判断比值与,与,与是否相等,并说明理由。
4 、归纳总结得到新知:
⑴三个比值与 b 点在的边 am 上的位置无关;
⑵三个比值随的变化而变化,但(0 °﹤∠α﹤90 ° )确定时,三个比值随之确定;
比值,,都是锐角的函数
比值叫做的正弦, sinα =
比值叫做的余弦, cos α=
比值叫做的正切, tanα =
( 3 )注意点: sin α, cos α, tan α都是一个完整的符号,单独的 “ sin ”没有意义,其中前面的“∠”一般省略不写。
强化读法,写法;分清各三角函数的自变量和应变量。
三、深化新知
1 、三角函数的定义
在 rt △ abc 中,如果锐角 a 确定,那么∠ a 的对边与斜边的比、邻边与斜边的比也随之确定 ,则有
sina =
cosa=
2 、提问:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?
(点拨)直角三角形中,斜边大于直角边。
生:独立思考,尝试回答,交流结果。
明确:锐角的三角函数值的范围: 0 < sin α< 1 , 0 < cos α< 1。
四、巩固新知
例 1. 如图 , 在 rt △ abc 中 , ∠ c=90 °, ab=5,bc=3,
( 1 )求∠ a 的正弦、余弦和正切 。
( 2 )求∠ b 的正弦、余弦和正切。
分析:由勾股定理求出 ac 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
提问:观察以上计算结果 , 你发现了什么 ?
明确: sina=cosb , cosa=sinb , tana · tanb=1
五、升华新知
例 2 . 如图 : 在 rt △ abc, ∠ b=90 ° ,ac=200,sina=0.6 ,求 bc 的长 。
由例 2 启发学生解决情境创设中的问题。
六、课堂小结:谈谈今天的收获
1 、内容总结
( 1 )在 rt δ abc 中 , 设∠ c=90 ° ,∠α为 rt δ abc 的一个锐角,则
∠α的正弦,∠α的余弦,
∠α的正切
2 、方法归纳
在涉及直角三角形边角关系时,常借助三角函数定义来解
四、布置作业