教案是教师在备课过程中用于组织、指导和反思教学活动的书面文件。编写教案的前提是对教材内容的全面理解和准确把握,为此教师需要进行详细的预习和复习。教案的编写需要借鉴其他优秀教师的经验和教学资源。
北师大版数学六年级下册教案篇一
1、经历运用平移、旋转或轴对称进行图案设计的过程,能运用图形的变换在方格纸上设计图案。
2、结合图案设计的过程,进一步体会平移、旋转和轴对称在设计图案中的作用,体验图形的变换过程,发展空间观念。
3、结合欣赏和设计美丽的图案,感受图形世界的神奇。
1、能够有条理地表达一个简单图形平移、旋转或作轴对称图形的过程。
2、能灵活运用平移、旋转和轴对称在方格纸上设计图案。
一、情境导入利用课件显示美丽的图案,配音乐,让学生欣赏。
二、学习新课。
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这些美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。(你看到的这些生活中的美丽图案,你想说什么?)。
三、观察、分析图案:
1、课件展示教材中的花瓣图案。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?(教材中呈现的花瓣是曲线图形,学生在画这个图时会感到困难,可以让学生看着图进行分析,也可以剪好一个基本图形,让学生在操作中体会图案设计的基本过程。)。
2、小组内进行交流。
3、小组代表汇报研究结果。(汇报花瓣图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的?)。
4、你还有其他方法吗?
5、教师小结:
其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。
四、设计图案。
1、鼓励学生观察分析图形的变换,进一步认识平移,旋转和轴对称。让学生说说自己的方法,把自己的思考过程表达出来。
2、小组合作设计图案。(组长汇报交流的结果。)。
3、作品展示:
(1)作品展示:把学生设计的图案分小组张贴在教室的前面,学生参观作品。
(2)学生评价:每个小组学生上台对自己小组的作品进行评价,比一比看谁评价得好。
4、全班交流,学生欣赏并评价。(学生点评)。
北师大版数学六年级下册教案篇二
生:方向与位置。
师:同学们说得很好,现在请同学们回忆一下,描述方向与位置的词语都有哪些?如何确定位置?这节课我们就来复习根据不同的参照物确定物体的位置。(板书课题:确定位置)。
1.整理复习学过的方位词。
(1)学生小组交流学过的方位词。
(2)学生汇报交流。
学过的方位词有上、下、前、后、左、右、东、南、西、北、东南、西南、东北、西北。东北方向也叫北偏东,西北方向也叫北偏西,东南方向也叫南偏东,西南方向也叫南偏西。
(3)请大家观察所在学校和学校周围的物体,用方位词来指明物体的方向和位置。
2.梳理用数对表示物体位置的方法。
用数对来表示物体准确位置的步骤和方法:
(1)确定位置:选定参照点(原点),建立直角坐标。(竖排叫作列,横排叫作行。确定第几列一般从左往右数,确定第几行一般从前往后数)。
(2)数对的写法:第一个数表示第几列,第二个数表示第几行,两个数用逗号隔开,外面加上小括号。
3.梳理用方向加距离表示物体位置的方法。
用方向和距离来表示物体准确位置的步骤:
(1)选定参照点(原点),建立直角坐标。
(2)确定方向和角度。
(3)确定比例尺,算出实际距离。
4.课件出示教材99页情境图。
(1)学生探究确定百鸟园位置的方法。
(2)小组汇报。
北师大版数学六年级下册教案篇三
生活中的比》是在学生已经学过除法的意义,分数的意义以及分数与除法的关系的基础上学习的,教材密切联系学生已有的生活经验和学习经验。设计了比“速度”、“图形放大缩小”“水果价格”等情境,引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生体会引入比的必要性及比在生活中的广泛存在。
“比”在数学中是一个重要的概念,体会比的意义和价值是教材内容的核心思想。教材没有采取直接出示“比”的概念的做法,而是以系列情境为学生理解比的意义提供了丰富的直观背景和具体案例,教师要利用好这些情境,真正达到帮助学生理解比的本质的目的。
北师大版数学六年级下册教案篇四
p27倒数的认识,练习六全部习题。
这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
(一)用汉字作比喻引入。
1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)。
师生共同确定本节课的目标——研究倒数的意义、方法和用处。
(二)新知探索:
1、研究倒数的意义。
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)。
(b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)。
(c、以“带分数”为例;带分数的倒数是真分数。)。
(d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)。
(e、以“整数”为例;整数相当于分母是1的假分数)。
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3、讨论“0”、“1”的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)。
4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)。
(三)反馈巩固:
1、完成“练一练”。
学生独立完成后,集体订正。重点问:“8”的倒数是几?
2、练习六5。
3、补充判断:
a、a是自然数,a的倒数是1/a。
北师大版数学六年级下册教案篇五
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:概括倒数的意义与求法。
教学难点:理解“互为”、“倒数”的含义。
教学方法:创设情境、激趣质疑、自主探究、合作学习。
教学过程:
一、比赛引入。
8/11×11/81/10×10。
7/9×9/77×1/7。
(师巡视学生的情况,并对分数的格式加以指导)。
学生思考后,汇报结果:
生1:两个乘数的分子、分母位置颠倒。
生2:每个算式乘积是1。
师:现在老师有点疑问,2不是分数,它的分子和分母是什么呢?生:
2可以写成2/1,分子分母颠倒后,2/1×1/2=1。
二、理解倒数的意义。
师:观察的真仔细,我们能不能给这样的数取个名字呀?
生:倒数。
师:对,这就是我们今天要研究的课题:倒数(板书)。
师:再看这几个算式,2×1/2=1,我们说:2是1/2的倒数,1/2是2的倒数。
师:看这几个算式,倒数是对几个数来说的?
生:两个数(师板书)。
师:这两个数的乘积有什么特点?
生:乘积是1(师板书)。
师:再举一个例子:2/3×3/2=1,我们说:2/3是3/2的倒数,3/2是2/3的倒数,2/3和3/2互为倒数(师板书:互为倒数)。
师:怎么理解“互为”呢?
生:相互的意思。
生:就是对两个数而言的`。
师:“互为”是对两个数而说的,不能孤立地说谁是倒数,应该说谁是谁的倒数。
生:。。。。。。
师:大家表现真好,老师也来说一个,3/5是倒数,对吗?
生:不对。
师:你帮老师改正吧。
生1:应该说3/5是5/3的倒数。
生2:。。。。。。
三、观察比较,抽象概念。
1、以小组为单位,学生主动探究这四组数的特点。
生:分子分母倒过来了。
师:那么我们就给这样的数取个名字吧!(板书课题―。
―倒数)师:继续观察这几组数,看看还有什么特点?
生:每组中两个数的乘积都为1。
(如学生不能找出这个特点,则可以引导学生做计算比赛。)。
2、请学生再举一些这样的例子进行观察。
3、概括“倒数”的意义,板书。(强调“两个数”――“互为”;“乘积为1”――“倒数”。)。
四、引导探究,掌握方法。
1、举例观察,讨论。(2/5的倒数)。
师:怎样求一个数的倒数呢?
生:分子分母交换位置。
(师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。)。
2、小组讨论,探究求整数的倒数的方法。
师:2的倒数怎么求呢?
生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)。
五、巩固练习,拓展外延。
1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。
2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。
3、1的倒数是几?(1的倒数是1。)你是怎样计算的?
(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。
(2)因为1×1=1,所以1的倒数为1。
4、0也是整数,0的倒数是几呢?
(1)出示0×()=1。谁上来填一填?(没人举手)。
师:0乘任何数都不得1,这说明了什么?
生:0没有倒数。
(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。
师:这样说可以吗?
生:不可以,因为0不以做分母。
5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?(先把带分数化成假分数,再求它的倒数。)。
6、小数有倒数吗?
(1)把小数化成分数,再求它的倒数。
(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。
六、深化练习,巩固提高。
1、填空。
(1)乘积是()的两个数互为倒数。
(2)()的倒数是它本身,()没有倒数。
(3)27/100的倒数是(),25/16的倒数是()。
(4)0.7的倒数是()。
2、判断。
(1)2/9是倒数。()。
(2)一个数的倒数一定比原来小。()。
(3)所有的数都有倒数。()。
(4)a是整数,所以a的倒数是1/a。()。
(5)因为0.2×5=1,所以0.2和5互为倒数。()。
七、全课小结。
北师大版数学六年级下册教案篇六
包装问题在日常生活中经常遇到,教材创设了“包装糖果”的情景,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它体现了数学的优化思想。同时有助于学生提高解决实际问题的能力,感受数学与实际生活的密切联系。
【学情分析】。
1、学生已有的知识基础。
在本课学习之前,学生已熟练掌握了长方体的特征,能准确、迅速的计算出长方体的表面积;初步认识了由两个相同的正方体拼成一个长方体后表面积发生的变化。
2、学生已有的生活经验。
学生大都接触过物品的包装,清楚地意识到用包装纸包装物品就是求物体的表面积,但实际所需的包装纸又比物体的表面积大,因而教师要和学生理清本课研究的是“接口处不计”的包装方式,这样的活动才能和生活进行有效沟通。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方法的多样化与策略的最优化可能存在问题,因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同探讨。
【教法学法】。
让学生通过小组活动,在合作探究中探索出不同的包装方法,再引导学生观察、比较、交流、总结,领会最节约包装纸的包装策略。使学生积累数学活动经验,感悟优化的数学思想。
【教学目标】。
知识与技能目标:利用表面积等有关知识,探索多个相同长方体叠放后使其表面积最小的最优策略。
过程与方法目标:1、体验解决问题的基本过程和方法,提高解决问题的能力。
2、通过解决包装问题,体验策略的多样化,发展优化思想。情感态度与价值观目标:渗透节约的意识,体会包装的学问在生活中的应用,感悟数学与生活的联系。
教学重点难点。
重点是:利用表面积等有关知识,探究多个相同长方体最节省包装纸的叠放方法。
难点是:理解最节省包装纸的包装策略。
【教具准备】:多媒体课件,师生共同准备若干个长方体纸盒。
【教学过程】。
一、课前交流。
师:请同学们看一看今天的课堂有什么不同?(有很多听课的老师)。
师:这么多的老师来听课,来一睹同学们的风采,你想对自己说些什么?让我们一起说“加油!我是最棒的!”。(生齐说)。
师:谢谢同学们,我们可以开始上课了吗?(生:可以)上课!
二、激发兴趣,导入课题。
上课之前先请同学们欣赏几幅关于包装的图片(课件出示图片)。师:你们看了这几幅图片后有什么感受,请说一说。
物品经过包装,显得更精美,可包装的目的不仅如此,在包装中还有许多其它的学问,今天我们就来学习《包装的学问》。(板书课题)。
再过几天就是李老师的4岁小侄子的生日,我买了盒蛋卷,(课件出示一盒长方体形状的蛋卷盒(10cm×8cm×5cm))老师也打算把这盒蛋卷包装后送给他,(课件演示用包装纸包装蛋卷盒)在包装时我遇到了个问题,请看。(课件出示问题:如果接头处不计,最少需要多大面积的包装纸呢?)。
师:谁能帮老师想一想怎样解决这个问题?(生:就是计算它的表面积。)怎么计算你可以说说吗?(生回答)。
师:下面我们就一起动手计算一下这个长方体蛋卷盒的表面积好吗?(生完成后交流反馈,课件展示老师的计算。)。
【设计意图:既复习了旧知识,又为下面组合长方体表面积计算打。
下了知识基础和情感基础。】。
三、动手操作,初步感知。
1、小组活动,自主探究。
师:老师的爱人也买了一盒同样的蛋卷,包装时一共需要多大面积的包装纸呢?(一个需要340cm,两个就是需要680cm。)。
师:有没有不同的意见?说一说。(可以合起来包装,就不是680cm了。)。
问:合起来包装为什么就不需要680cm包装纸呢?(有的面重合起来了。)。
师:重合的面在包装时需要用包装纸包装吗?(不需要)。
师:可以怎样包装呢?请同学们同桌合作,拿出两个长方体纸盒摆一摆。(学生同桌合作,探索组合包装的方法。)。
请一名学生展示摆放的方法。(教师在黑板上用实物展示。)。
问:还有没有其他的包装方法?再指名展示,老师在黑板上用实物展示。(展示结束,课件出示三种组合包装的方法图。)。
2、展开猜想,交流讨论。
师:大家观察一下,这三种包装方法有什么不同?(重合的面不同。)师:同学们观察得很仔细。请看第一种方法重合的是哪些面?(生:两个最大的面。)。
师:我们可以说“重合了两个大面”。第二种方法和第三种方法呢?(生:第二种方法重合的是两个中面,第三种方法重合的是两个小面。)。
师:请同学们猜想一下,这三种方法中哪种方法最节约包装纸?(生:第一种)。
问:第一种方法最节约,你能说一说你是怎样猜想的吗?(指名交流。)。
3、验证猜想,得出结论。
师:这个猜想是不是正确呢?我们可以通过什么方式来验证呢?(可以分别计算出三种组合后的长方体的表面积,再比较一下就知道了。)。
问:怎样计算大长方体的表面积?(预设学生回答:可以根据组合后的大长方体的长宽高直接计算出表面积;也可以把两个小长方体的表面积之和减去重合面的面积。)。
先让学生计算出第一种方法包装后的大长方体表面积。(指名板书)师:有不同的计算方法吗?(再指名板书)。
师:我们来比较一下哪种方法简单一些?(指名回答)(把两个小长方体的表面积之和减去重合面的面积。)。
师:请同学们用自己喜欢的方法计算另两种的表面积。(指名板书)师:从计算的结果看,是不是和我们刚才的猜想一致呢?(一致)师:谁能说一说在包装时究竟怎样包装才能节约包装纸吗?(指名回答)。
四、组合三个,再次体验。
北师大版数学六年级下册教案篇七
《百分数的应用(三)》是北师大版小学数学六年级上册第二单元的内容。在学习本课之前,学生已有两个层次的基础:用分数解决实际问题和百分数知识的学习。同时,本课的学习还将是学生初中代数学习的知识基础。
本课的编排是这样的,教材呈现出一幅笑笑妈妈记录的家庭消费情况统计表以及针对表格提出的两个问题。第一个问题和课后阅读资料主要是体现百分数在生活中的应用价值。而第二问则是本课的重点所在。
根据学生已有的知识基础和本课编排特点,我将本课目标设定为以下两点。
1.通过探索、交流、比较,使学生掌握根据百分数的意义列方程解决问题的方法,并体会百分数在生活中的广泛应用。
2.培养学生自主构建知识结构、与人交流以及运用数学解决问题的能力。
教学重点:
使学生掌握根据百分数的意义列方程解决问题的方法。
教学难点:
找准题目中的等量关系。
二、说教法与学法。
1.探究交流——自主构建。
2.联系生活——体验价值。
学生是学习的主人,自主探究、相互交流、分析比较、联系生活都是学习本课的有效方式。
三、说教学过程。
本课的教学环节分为3大块:阅读资料,导入新课——自主探究,分析比较——拓展思路,学以致用。
课始,阅读资料,导入新课。课件出示教材中的阅读材。
料关于恩格尔系数的介绍。请学生带着下列问题独立阅读“恩格尔系数指什么?结合课前收集的数据你能计算出你家的恩格尔系数,并对此做出科学解释吗?”,然后同桌交流,全班反馈并小结得出:百分数与我们的生活息息相关,同时揭示课题:今天我们来学习“百分数的应用(三)”。
应的复习题就是为了让学生主动寻找新的知识生长点,感悟新的学习方法以达到学习能力的培养。
课中,“自主探究,分析比较”分为3个层次:循序渐进,动态示题——探究交流,夯实基础——比较优化,激活思维。
首先:循序渐进,动态示题。“笑笑也调查了一份他们家的。
食品支出情况,我们去看一看”然后运用课件将表格中的第一排数据一一出示,让学生分别判断处于什么生活水平,然后再说一说有什么发现。这样逐一出示,能够让学生的观察视野随着时间的推移,直观的发现笑笑家生活水平从贫困—温饱—接近小康的巨大变化,感受到这些年来人们生活水平的提高,然后再出示整张表格。这时,我将问题(1)去掉,因为它已经在动态出示表格的过程中完成了,直接将问题(2)改成(1)随着表格一起出现:“1985年食品支出比其他支出多210元,你知道这个家庭的总支出吗?”我把它分成探究交流环节和比较优化环节。
探究交流,夯实基础。这个环节主要通过以下4步完成。
1.独立审题,并尝试画图、列式、解答。
2.小组内交流想法:“你是怎么想的?”
3.在黑板上展示一些有代表性的方法。
4.全班交流反馈。
独立完成有利于学生在探究的过程中亲历知识的形成,
以达到自主建构。交流想法则是用语言将自己的思考过程再一次论证,展现。
而在展示方法这一步,由于前面的学习基础,大部分同学都会选择用方程来解这道题,主要有“65%x-35%x=210”,也有可能会出现这一种“(65%-35%)x=210”,当然也不排除少数同学用算术方法---210÷(65%-35%)。所以将这三种代表性的方法都展示在黑板上。在反馈的时侯一定要引导学生说出解题思路,尤其是对等量关系的把握。比如第一种“65%x-35%x=210”根据要求,学生一般都会先画出线段图,那么首先要让学生根据线段图说出图意,其次说出列方程的根据:“你是抓住哪句话来分析的?”通过“食品支出比其他支出多210元”得出等量关系:“食品支出的钱数-其他支出的钱数=210元”,再根据等量关系说出所列方程的含义:“65%x、35%x分别表示什么?”以加深学生对本课的理解并达成本课的教学目标,突出重点,突破难点。对于“(65%-35%)x=210”虽然从算式来看只是在第一种的基础上运用了乘法分配律,但是实际上他们所依据的数量关系是完全不一样的,可适时让学生讨论这两种方程方法的区别与联系。期间对于学生因为粗心比较容易犯的错误,要拿出来让他们自己去思考、讨论错的原因。总之,对于基础好的同学多放手,给他们探索的空间,注重学习能力的培养,对于基础差的学生既要让他们思考也要在他困惑时给予引导。
据题目中的数量关系直接列出方程式,便于理解;同时指出列方程这种方法在我们以后的学习和实际生活中将发挥越来越大的作用。然后要求学生用列方程的方法完成教材试一试的第2题“(2)2005年,食品支出占50%,旅游支出占10%,两项支出一共5400元,这个家庭的总支出是多少元?”
来巩固所学。由于第一题“(1)1995年,其它支出比食品支出少760元,这个家庭的总支出是多少元?”与例题是重复的,所以删掉。而第(2)题作为例题的延伸和对主题资源的有效利用做为课堂练习。
课尾——拓展思路,学以致用。由于前面的学习比较充分,而教材后面的练习题和例题基本处于同一层次水平,所以我在丰富练习的内容和形式以及联系生活实际这两方面作了一些探索。据此我设计了两道练习题。
1.某班在一次数学单元训练中这道题是从扇形图的练习形式以及涵盖了基本训练、变式训练、发散训练的练习内容两方面丰富了本课,其意图是在巩固知识的基础上,进一步提高学生举一反三的数学能力以及创新意识、环保意识的培养。第二道题选用的材料是《我国前三季度全国财政收入情况》的财经报道。
2.在全球经济危机的大局面下,我国经济率先崛起。截至9月份,前三季度累计全国财政收入51518亿元比去年同期增长5.3%,其中中央本级收入27526.8亿元,同比增1.6%,地方本级收入23992.07亿元同比增长9.8%问题:根据这些信息你能知道什么?你能提出哪些问题并列出算式?这道题的数据虽然复杂不方便计算,但是体现了数学材料的真实性。其倾向性在于培养学生自主搜集、提取信息并加以综合运用的能力。下面我来介绍一下本课的板书:因为本课本着“放手让学生探索”的定位思想,所以板书的设计遵循“黑板是学生的试验田”的原则,除了教师板书课题及一些重点要求外,主要是学生上来展示他们的解题方法。
就是这样,一堂朴实数学课的探究与应用,就此结束,希望能得到在做的专家与同仁的指导。谢谢!
北师大版数学六年级下册教案篇八
教学目标:
1、使学生理解和掌握乘法交换律和结合律。
2、借助观察、比较、概括等方法,应用乘法交换律和结合律进行简便计算,培养学生的分析推理能力。
3、培养学生运用新知识解决实际问题的能力。
教学重难点:
1、使学生理解并运用乘法交换律和结合律。
2、乘法交换律和结合率的运用。
教具准备:
口算卡片。
教学过程:
一、导入。
1、出示口算卡片。
50__70=125__8=40__5=11+7=4+25=。
70__50=8__125=5__40=7+11=25+4=。
2、复习乘法算式的各部分名称:
板书:5__4=20。
因数因数积。
二、教学实施。
1、领会主题图。
(1)、观察图意。
(2)、说说你从图中你了解到了那些信息。
(3)、根据图中带给我们的信息,可解决那些问题?
2、出示例1:负责挖坑、种树的一共有多少人?
(1)、分析数量关系。
(2)、列式计算:4__25=100(人)或25__4=100(人)。
(3)、引导观察,比较两种解决的结果,这两个算式之间可以用什么符号连接?(4__25=25__4)。
(4)、这个等式说明了什么?(把4和25两个因数交换位置,积不变)。
(5)、举例。
(6)、归纳总结:
交换两个因数的位置,积不变,叫乘法交换律。
(7)、用字母表示乘法交换律。
a__b=b__a。
说一说a、b可以是那些数?(a、b可以是任何两个不同的数)。
(8)、找一找,主题图中哪个问题可以用乘法交换律来解决。
师:加法中有结合律,乘法中是不是也会有结合律呢?乘法的结合律会是什么样的?我们一起研究一下。
2、出示例2:有25个小组,每组要种5棵树,每棵树要浇2桶水。一共要浇多少桶水?
(1)、读题,分析数量关系。
(2)、请同学用不同的方法解答。板书解题思路。
方法一:(25__5)__2方法二:25__(5__2)。
=125__2=25__10。
=250(桶)=250(桶)。
(3)、小组讨论两种解法的相同点和不同点。
(4)、这两个算式之间可以用什么符号连接?
板书:(25__5)__2=25__(5__2)。
(5)、观察下面三组算式,说说你发现了什么?
(15__6)__10()15__(6__10)。
(125__80)__3()125__(80__3)。
(12__25)__4()12__(25__4)。
(6)、归纳总结:
三个数相乘,先乘两个数,或者先乘后两个数,积不变,叫乘法结合律。
(7)、用字母表示乘法结合律:(a__b)__c=a__(b__c)。
这里a、b、c表示的是大于或等于0的整数。
3、比较、概括、归纳。
比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?
交换律是两数相加(乘)的规律,既交换两个加(因)数的位置,和(积)不变;结合律是三数相加(乘)的规律,既可以从左往右计算,也可以先把后两个数先相加(乘),和(积)不变。
4、巩固提高。
(1)、填一填:
75__26=()__()8__2=2()。
a__b=()__()a__()=15__()。
125__7__8=()__()__7(40__15)__[]=40__([]__6)。
25__(4__[])__([]__4)__132__4__6__5=(4__6)__([]__[])。
(2)、学校教学楼共有4层,每层有5间教室,每个教室安6盏灯。一共需要多少盏灯?
6、课堂小结:
通过本节课的学习,你都有哪些收获?
文档为doc格式。
北师大版数学六年级下册教案篇九
复习内容:
教材练习四的内容。
复习目标:
1.进一步掌握三种常见的统计图,了解它们各自的特点,能根据实际情况选择合适的统计图。
2.能根据统计图中的数据信息提出并解答简单的问题。
3.能对统计图中与现实生活相关的数据作出合理的解释,能选择合适的统计图描述并解决现实生活中的简单问题。
教学重点:
能根据统计图中的数据信息提出并解答简单的问题。
教学难点:
能选择合适的统计图描述并解决现实生活中的简单问题。
教学准备:
教学课件。
教学过程:
学生活动。
(二次备课)。
一、知识梳理。
(一)谈话导入。
师:同学们,第五单元《数据处理》的知识我们都已经学完。关于这部分内容,你学会了什么,还有什么疑问?这节课我们一起来回顾并解决问题。
(二)梳理反馈,建构网络。
组织学生回顾本单元知识,在小组内交流汇总后进行汇报。
1.扇形统计图:用整个圆表示总数,用圆内大小不同的扇形表示各部分所占总数的百分比。它可以清楚地表示出各部分数量和总数量之间的关系。
2.统计图的选择:根据它们各自的特点结合实际需求。
扇形统计图:可以清楚表示各部分数量所占总数的百分比。
条形统计图:可以清楚描述各部分的数量的多少。
折线统计图:可以清楚反映事物的变化情况。
3.数据的整理:可以分段整理数据,填写统计表。
4.复式折线统计图:对两组数据进行比较时,可以把两组数据进行分段整理,然后绘制出复式折线统计图,能清楚地看出数据分布状况及集中趋势。
二、针对练习。
1.完成教材练习四第1题。
(1)组织学生读题,理解题意。
(2)思考:根据题目要求想一想选择什么样的统计图较为合适?
生:因为要表示去年凉鞋销售量的变化情况,所以应选择折线统计图更合适。
(3)学生独立完成折线统计图。
(4)展示学生完成的统计图。
2.完成教材练习四第2题。
(1)让学生读题后说一说找到的数学信息。
生1:这是扇形统计图,在这道题中整个圆表示奇思家12月生活总支出;
生2:奇思家12月生活支出有服装、文化、食品、水电气、赡养老人和其他。
(2)让学生思考:扇形统计图主要表现什么?统计图中的每个百分数的意义是什么?
(3)学生独立计算,完成后集体订正。
3.完成教材练习四第4题。
学生独立完成。老师提示:在分段统计时可以用画“正”字的方法统计,数据不重复不漏掉。
三、巩固练习。
1.完成教材练习四第3题。
指名让学生回答根据下面情况分别用哪种统计图表示比较合适,并说明理由。
2.完成教材练习四第5题。
(1)教师给出本班和邻班10名男生的60。
m跑成绩。
(2)让学生说说如何比较。
(3)学生自己计算、画图完成后汇报。
四、课堂总结。
通过这节课的整理和复习,你有什么收获?
五、作业布置。
教材练习四第6题。
板书设计。
练习四。
1.条形统计图、折线统计图、扇形统计图的特点和适用范围。
2.整理数据:分段。
3.绘制统计图时需要注意的事项。
教学反思。
成功之处:本节课设计要求学生独立思考,鼓励学生联系生活实际创造性地解决问题,让学生把思考过程、结果说出来,有利于培养学生的思维能力,拓宽学生的思维空间。
不足之处:可能有些学生从统计图获取的信息中所提出的问题难度大,将简单知识复杂化了,不适于学困生。
教学建议:在教学中提问要有针对性,让学生自由支配的时间要多一些,大胆让学生根据信息提出数学问题。
北师大版数学六年级下册教案篇十
实践要求:
1、经历有目的、有设计、有步骤、有合作的实践活动。
2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。
3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。
4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。
教学内容:
冀教版小学数学六年级上册69——70页。
教学目标:
1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。
2、数学思考:如何对自己设计的理财方案作出合理的解释。
3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。
4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。
教学重点:
学会理财,会对自己设计的理财方案作出合理的解释。
教学难点:
对自己设计的理财方案作出合理的解释。
教学流程:
一、导入。
老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。
{设计意图:通过和学生谈话,轻松引入本节课的课题}。
二、任务一。
设计方案,解决问题。
聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)。
(1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)。
(2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)。
(3)议一议:你认为那种存钱方案?为什么?
三、小组汇报、展示。
四、任务二。
聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。
零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。
(1)计算聪聪家每个月的结余。
(2)根据聪聪家的实际情况,制定合理的存钱计划,并说明理由。
(3)按照你的存钱计划,算一下,到期能取回多少钱?
知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。
其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。
五、分享收获。
六、课下作业。
为自己的零花钱制定一个零存整取的存钱计划。
板书设计:
收入:2160+4180=6340(元)。
支出:2500+800+200+160+30=3690(元)。
结余:6340—3690=2650(元)。
北师大版数学六年级下册教案篇十一
教学内容:
课本第5758页扇形统计图。
教学目标:
1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。
2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。
3、提高学生的实际应用能力。
教学重点:
认识扇形统计图,了解扇形统计图的特点与作用。
教学难点:
学生的实际应用能力的提高。
教具准备:
课件。
教学过程:
北师大版数学六年级下册教案篇十二
1.我国有一个非常的科学家-----袁隆平,大家知道吗?(如果有学生知道,可以让学生说一说)。
2.他是我国杂交水稻研究领域的开创者和带头人,也是世界上第一个成功地利用水稻杂交优势的科学家,是联合国粮农组织国际首席顾问,被誉为“杂交水稻之父”。
3.因为杂交水稻比普通水稻的产量要高很多,所以我国杂交水稻的种植面积一年比一年增加。
二、百分数的应用。
1.生活中的百分数问题。
2.线段图。
教师提出要求:你能用线段图表示出2000年和2001年之间的数量关系吗?
学生独立画图。
展示学生的成果。
教师评价。
25%=1/4。
20公顷。
2000年。
25%。
2001年。
3.学生自主解答问题。
4.班内交流。
办法一:20×25%=5(公顷)。
20+5=25(公顷)。
办法二:1+25%=125%。
20×125%=25(公顷)。
三、试一试。
1.生活中的折扣。
游乐场的套票原来每套30元,六一期间八折优惠,购买一套这样的套票能省多少元?
2.思考:八折是什么意思?
学生自由发表自己的见解。
教师评价。
八折就是现价是原价的80%。
3.学生自主解答然后交流。
办法一:30×80%=24(元)。
办法二:30×(1-80%)。
=30×20%。
=6(元)。
四、练一练。
1.教科书p26练一练第1题。
2.教科书p26练一练第2题。
3.教科书p26练一练第3题。
五、课堂总结。
通过今天的学习你有什么收获?
北师大版数学六年级下册教案篇十三
第一课时:直方图(1)。
学习目标:了解频数分布表的制作步骤。
重点、难点:频数分布表的制作。
学习过程:
问题一:下面数据是截止2002年费尔兹奖得主获奖时的年龄:。
293935333928333531313732。
383631393238373429343832。
353633293235363739384038。
373938343340363637403138。
请根据下面的不同分组方法,你觉得比较哪一种分组能更好地说明费尔兹奖得主获奖的年龄分布,并列出频数分布表,画出频数分布直方图.
解:1.计算极差(最大值与最小值的差):。
2.决定组距与组数:。
3.列频数分布表:。
年龄分组划记频数。
合计。
4.画出频数分布直方图。
课堂练习:
1、光明中学为了解本校学生的身体发育情况,对八年级同龄的名女生的身高进行了测量,结果如下(数据均为整数,单位:):。
将数据适当分组,绘制频数分布直方图。
2、体育委员统计了全班同学60秒跳绳的次数,并列出下列频数分布表:。
(1)全班有名同学;。
(2)组距是,组数是;。
(3)跳绳次数在范围的同学有人,占全班同学%;(精确到0.01%)。
(4)画出适当的统计图表示上面的信息;。
(5)你怎样评价这个班的跳绳成绩?
3、为了进一步了解七年级学生的身体素质情况,体育老师对七年级(1)班50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下图所示.
组别次数x频数(人数)。
第1组801006。
第2组1001208。
第3组120140a。
第4组140。
第5组160。
请结合图表完成下列问题.
(1)表中的a=______.
(2)请把频数直方图补充完整.
(3)若八年级学生1min跳绳次数(x)达标要求是:x120为不合格,120140为合格,140160为良,x160为优,根据以上信息,请你给学校或七年级同学提一条合理化建议.
第二课时:直方图(二)。
学习目标:能正确画出频数分布直方图和画频数折线图。
重点、难点:能正确地画出频数分布直方图。
学习过程:
解:(1)计算极差:(4)画频数分布直方图和频数折线图:
(2)决定组数和组距:
(3)列频数分布表:
平行线及平行公理。
教学建议。
1、教材分析。
(1)知识结构。
本节从实例中概括出平行线的概念,给出了平行线的记法和它的画法,并引出了平行公理及其推论.
(2)重点、难点分析。
本节的重点是:平行公理及其推论.承认经过直线外一点有且只有一条直线与这条直线平行的几何是欧氏几何,否则是非欧几何.由此可见,平行公理在几何中的地位十分重要.在教学时,学生可以从用直尺和三角板画平行线的画图过程中,理解平行公理.特别是真正地体会到公理中的有且只有的意义.
本节难点是:理解平行线的概念以及由平行公理导出其推论的过程定义中的在同一平面内的这个前提,是为了区别立体几何中异面直线的情况.教学时只要学生能意识到,空间的直线还存在另一种不相交的情形的,即异面直线.
另外,从平行公理推导出其推论的过程,渗透了反证法的思想.初中学生难于理解,教材对反证法既不作要求,也不必提出反证法这个词,只要把道理说明白即可.
2、教法建议。
(1)概念的引入:学生从教师创设的情景中,可以直观地认识平行线.从实例中,体会平行线在现实中是存在的,并且有它固有的属性,因此很有必要认真地研究它.当然,我们首先要能深刻地理解它的定义.
(3)掌握平行线的画法:学生刚开始接触几何,为降低难度,适应学生的发展,提高学生的学习兴趣,作图时不要求学生写出已知,求做,证明等步骤,只要保留作图痕迹.通过作图的教学使学生能准确而迅速地画出几何图形,为今后的几何学习打下良好的基础.
(4)平行公理及其推论。
在学生画图的过程中,教师可以提出问题,过直线外一点有几条直线可以与已知直线平行呢?学生在动手操作后,可以体验到公理的客观存在性.并且可以让有数学素养的同学,尝试说明平行公理推论的正确性,通过说理,体会数学的严谨性与逻辑性.
教学设计示例。
一、教学目标。
1.了解平行线的概念,理解学过的描述图形形状和位置关系的语句.
2.掌握平行公理及推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;会用学过的几何语句描述简单的图形和根据语句画图.
3.通过画平行线和按几何语句画图的题目练习,培养学生画图能力.
4.通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力.
二、学法引导。
1.教师教法:尝试法、引导法、发现法.
2.学生学法:在教师的引导下,尝试发现新知,造就成就感.
三、重点、难点及解决办法。
(-)重点。
平行公理及推论.
(二)难点。
平行线概念的理解.
(三)解决办法。
通过引导学生尝试发现新知、练习巩固的方法来解决.
四、教具学具准备。
投影仪、三角板、自制胶片.
五、师生互动活动设计。
1.通过投影片和适当问题创设情境,引入新课.
2.通过教师引导,学生积极思维,进行反馈练习,完成新授.
3.学生自己完成本课小结.
六、教学步骤。
(-)明确目标。
掌握平行公理及其推论的应用,能画出平行线,会用几何语句描述图形的画法,培养学生的逻辑推理能力.
(二)整体感知。
以情境引出课题,以生活知识和已有的知识为基础,引导学生学习了平行公理及其推论,并以变式训练强化和巩固新知.
(三)教学过程。
创设情境,引出课题。