范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
萃取分液教学设计 萃取和分液实验操作篇一
一、任务目标
1、确定、组装实验装置,制取并收集二氧化碳气体;掌握二氧化碳的收集和检验方法。
2、通过实验进一步了解和学习二氧化碳的性质。
二、重、难点及解决办法
1.重点:实验室制取二氧化碳实验装置和收集方法确定。2.难点:仪器的组装,操作技能、团队合作精神的训练。3.解决方法
(1)采取讨论的形式,从学生学过的氧气的实验室制法,归纳和总结出气体实验室制法的设计思路和方法。
(2)通过学生实验操作,提高学生操作能力,培养团队合作精神。
三、探究准备 实验用品:
锥形瓶、分液漏斗(或长颈漏斗)、双孔橡皮塞、导管、集气瓶、托盘天平(或自制简易天平)、试管3支、酒精灯、250ml烧杯2只、500ml烧杯一只、火柴、玻璃片、软塑料瓶2个、试管夹、弹簧夹、试管架、阶梯式铁片,蒸发皿、药匙
石灰石(或大理石)、稀盐酸、长短不同的蜡烛2支、紫色石蕊试液、澄清石灰水、蒸馏水
四、探究方法
本节主要采用分组实验、实验探究的形式,使学生掌握二氧化碳的实验室制法和性质探究
五、教学过程
同学们好,很高兴与同学们一起学习化学知识。你们喜欢做实验吗?好,今天我们到实验室来制取二氧化碳,并验证其性质。希望同学们学有所获。
(一)出示目标:见ppt生读,教师板书课题
(二)[知识回顾]:
一、实验室制取二氧化碳的药品和化学反应原理 [学生活动]: 根据学生回答,板书(视情况)[板书]:1.药品:大理石(石灰石)和稀盐酸
2.化学方程式:caco3 + 2hcl == cacl2 + h2o + co2↑
下面同学们结合实验室制取氧气的实验探究,小组合作,共同完成学案中的任务1、2,时间5分钟
[提问]:根据实验室制取二氧化碳的反应原理,确定制取二氧化碳可采用什么装置? [板书]:
二、实验室制取二氧化碳的装置 [板书]:
1、收集方法的确定: [回顾]:实验室制取氧气的装置。
[师生活动]:回顾发生装置选择的依据。见 ppt 从实验室制取二氧化碳的药品可以确定与实验室中用双氧水制取氧气的发生装置相同。
[提问]:根据co2的物理性质,采用什么方法来收集co2呢? [板书]:
2、收集方法的确定: [师生活动]:收集装置选择的考虑因素 [总结]:用向上排空气法,不能用排水法。
[师生总结]:结合以上分析,确定实验装置:用ppt演示制取组合,重点介绍锥形瓶组合,以利于学生本节实验操作。
[提问]:如何证明集气瓶中充满了二氧化碳? 教师ppt演示
验满方法:将燃着木条放在集气瓶口,如木条熄灭,证明瓶内充满co2。[师生小结]:试着总结出实验室制取二氧化碳操作步骤。见ppt演示 组装仪器—检查气密性—加药品—收集气体—验满 教师结合学生的自学后的回答,做出纠正。
(三)[学生实验]:本节课目的是实验室制取二氧化碳并验证其性质。因时间关系,同学们不能预习学案,我们一起来梳理一下,以便同学们能顺利实验。
首先检查实验用品是否齐全,进行气密性检查,然后小组合作进行实验,分别收集分别收集一集气瓶和2塑料瓶二氧化碳气体,根据学案提示完成6个探究实验,记录实验现象,并对实验现象作出相应解释。出示幻灯片:探究二氧化碳的性质(教师引导快速阅读,明确实验步骤)
[教师提醒指导]:(结合ppt演示完成实验报告)1)、学生开始收集时,提醒学生将小烧杯放于天平上,调整平衡。
2)、验满后,改用塑料瓶收集。此时再将集气瓶内二氧化碳向简易天平一侧塑料桶内倾倒,观察天平平衡情况。
3)、第一个塑料瓶验满,换第二个塑料瓶收集。
4)、向第一个瓶中加约1/3的蒸馏水,迅速拧紧瓶盖,振荡,静置,观察现象。各取1--2ml紫色石蕊试液和澄清的石灰水于2支试管中,准备化学性质的探究。(此时可再观察塑料瓶变化情况)
5)、待第二个塑料瓶收集满后,盖好,将导管通入紫色石蕊试液,观察现象。点燃酒精灯,用试管夹夹持该试管,加热,观察现象 6)、将导管通入澄清石灰水中,观察现象。
[总结]:检验方法:将生成的气体通人澄清的石灰水中,如果石灰水变浑浊,则证明该气体为co2。
7)、将烧杯中的蜡烛点燃,将第二瓶中的co2气体从矮蜡烛一侧缓缓倒入,观察现象
(四)[反思交流]:物质的性质决定用途,结合本实验说明为什么二氧化碳是优良的灭火剂?
生答:
1、二氧化碳的密度比空气大
2、通常情况下不燃烧也不支持燃烧
(五)[谈收获]:结合本节课的实验情况,谈一下你的收获。
(六)[挑战自我]:
1.硫化氢是没有颜色,有臭鸡蛋气味的有剧毒气体。它的密度比空气略大,能溶于水,1体积水能溶解2.6体积的硫化氢,溶于水形成氢硫酸。
硫化氢是一种可燃性气体: 2h2s+3o2===2h2o+2so2
实验室里常用块状固体硫化亚铁(fes)与稀硫酸反应来制取硫化氢。(1)实验室制取硫化氢的发生装置可用制取__________气体的装置;(2)收集应用_______________;(3)为了防止多余的气体逸出污染环境,可将其通入______中。3.下列哪个反应可用于实验室制取二氧化碳:
a.c + o2 === co2 b.c + 2cuo == 2cu+co2 ↑
高温 点燃
高温
点燃
3+2hcl ==cacl2+h2o+co2 ↑ d caco3=== cao+co2 ↑
4、甲烷的实验室制法是:用无水醋酸钠和碱石灰两种固态药品,经研磨均匀混合后装入反应装置中,加热产生甲烷气体。甲烷是一种无色、无味,比空气轻,极难溶于水的气体。(1)本实验中反应物的状态为_____, 反应条件为_____.(2)此实验的气体发生装置与co2气体的发生装置是否相同?
(3)甲烷气体是否难溶于水,密度是否比空气大。利用此性质应用_____________或_____________方法来收集甲烷。
(七)[作业设计]:
必做:独立完成本次实验报告
选作:通过比较、归纳实验室制取氧气和二氧化碳的两个实验,总结实验室制取气体的一般思路和方法
萃取分液教学设计 萃取和分液实验操作篇二
制取蒸馏水、萃取(无机物的分离与提纯)
三维目标
知识与技能:明确无机物分离与提纯常用的方法;
掌握蒸馏、萃取、分液等实验的操作技能。
过程与方法:亲自动手实验,体会科学研究的方法。
情感态度与价值观:养成严谨求实的科学态度,学会合作和探究。教学重点:认识分液漏斗,掌握蒸馏和萃取操作的基本方法。教学难点:蒸馏、萃取、分液的实验原理。教学方法:实验法 课堂类型:分组实验 教学手段:实验演示 教学用具:化学仪器 教学过程:
一、知识准备
1.蒸馏常用的仪器及操作注意事项。
(1)原理:利用互溶的液体混合物中各组分的沸点不同,给液体混合物加热,使其中的某一组分变成蒸气再冷凝成液体,从而达到分离提纯的目的。蒸馏一般用于分离沸点相差较大的液体混合物。(例如蒸馏含有fe3+的水提纯其中水份,蒸馏石油提纯不同沸点的有机组分)(2)仪器:铁架台、酒精灯、石棉网、蒸馏烧瓶、冷凝管、温度计、胶塞、牛角管(尾接管)、锥形瓶、胶管
(3)蒸馏时的注意事项:
a.烧瓶内液体的容积不超过2/3,烧瓶要垫上石棉网加热,烧瓶中还要加入沸石(碎瓷片)防止爆沸。
b.温度计下端水银泡应置于烧瓶支管处,测量逸出气体的温度。c.冷凝水下口进,上口出。
d.实验开始时,先开冷凝水,后加热。实验结束时,先停止加热,后关冷凝水。溶液不可蒸干。
2.萃取分液
(1)原理:萃取,就是一种物质在溶剂a中的溶解度小于溶剂b,那么,根据物质扩散原理,该物质就会从a扩散到b,且大部分都会扩散到b。
分液,就是a与b互不相容,就会分成上下两层,比如说油和水,那么,我们就可以把上层和下层的液体通过分液漏斗分别从上口和下口分理出。
(2)主要步骤:①检验分液漏斗是否漏水;②先装入溶液再加入萃取剂,振荡;③将分液漏斗放在铁圈上静置,使其分层;④打开分液漏斗活塞,再打开旋塞,使下层液体从分液漏斗下端放出,待油水界面与旋塞上口相切即可关闭旋塞;⑤把上层液体从分液漏斗上口倒出。
二、实验仪器和药品
药品:自来水,稀硝酸,硝酸银溶液,四氯化碳,碘水,沸石 器材:铁架台(带铁圈),蒸馏烧瓶,冷凝管,牛角管,锥形瓶,酒精灯,分液漏斗,烧杯,胶皮管
三、探究过程 1.制取蒸馏水:
(1)将蒸馏烧瓶,冷凝管仪器装配好。
(2)在蒸馏烧瓶里加入普通水(自来水)至烧瓶容积的一半左右,再加入一些碎瓷片,然
后用插有温度计(150℃)的橡皮塞塞紧。(注意温度计水银球在蒸馏烧瓶支管的位置),给蒸馏烧瓶加热。
(3)当水温达到约100℃时,水沸腾,水蒸气经过冷凝管冷凝后,收集在锥形瓶中,这就是蒸馏水。
2.萃取碘水中的碘:
(1)用量筒量取10ml碘的饱和水溶液,倒入分液漏斗,然后再注入4ml四氯化碳,盖好玻璃塞。
(2)用右手压住分液漏斗口部,左手握住活塞部分,把分液漏斗倒转过来振荡,使两种液体充分接触,振荡后打开活塞,是漏斗内气体放出。(3)将分液漏斗放在铁架台上,静置。
(4)待液体分层后,将分液漏斗颈上的玻璃塞打开,或使塞上的凹槽(或小孔)对准漏斗上的小孔,再将分液漏斗下面的活塞拧开,使下层液体慢慢沿烧杯壁而流下。
现象:静置后,溶液分层,上层为水溶液,无色;下层为四氯化碳的碘溶液,呈紫红色。原理:水与四氯化碳对比,碘更易溶于四氯化碳
板书设计:
1.制取蒸馏水 2.萃取碘水中的碘
学生实验:
作业布置:完成实验报告的填写;绘制蒸馏操作的装置图
课后反思:部分同学动手能力弱,操作起来感觉手忙脚乱,无所适从。部分预习较好的同学能很快的规范的做完实验。
萃取分液教学设计 萃取和分液实验操作篇三
第十章 固液浸取
第一节 萃取原理
教学目标:
理解萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。
掌握单级萃取、多级逆流萃取、多级错流萃取的物料流动过程。教学重点:
萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。单级萃取、多级逆流萃取的物料流动过程。教学难点:
萃取分配定律的含义,分配常数计算公式的具体应用。教学内容:
一、萃取基本原理 1.萃取过程
如图10—1所示,假设一种溶液的溶剂a与另一个溶剂b互不相容,且溶质c在b中的溶解度大于在a中的溶解度,当将溶剂b加入到溶液中经振摇静臵后,则会发生分层现象,且大部分溶质c转移到了溶剂b中。这种溶质从一种体系转移到另一个体系的过程称为萃取过程。在萃取过程中起转移溶质作用的溶剂称为萃取剂,由萃取剂和溶质组成的溶液叫萃取液,原来的溶液在萃取后则称为萃余液。如果萃取前的体系是液态则称为液—液萃取,如果是固态则称为固——液萃取,又称固液浸取,如用石油醚萃取青蒿中的青蒿素就是典型的固液浸取实例。
2.萃取原理
物质的溶解能力是由构成物质分子的极性和溶剂分子的极性决定的,遵守“相似相溶”原则的,即分子极性大的物质溶于极性溶剂,分子极性小的物质溶解于弱极性或非极性溶剂中。例如,还原糖、蛋白质、氨基酸、维生素b族等物质,其分子极性大,可溶于极性溶剂水中,而不溶解于非极性溶剂石油醚中。又如大多数萜类化合物的分子极性小,易溶于石油醚和氯仿等极性小的溶剂中,但不溶于水等极性强的溶剂。因此,同一种化合物在不同的溶剂中有不同的溶解能力。当一种溶质处于极性大小不相当的溶剂中时,其溶解能力小,有转移到相当极性的溶剂中去的趋势,假设这种极性相当的溶剂与原来的溶剂互不相溶,则绝大部分溶质就会从原来的相态扩散到新的溶剂中,形成新的溶液体系,即形成萃取液。
在萃取过程时,溶质转移到萃取剂中的程度遵守分配定律。指出,在其他条件不变的情况下,萃取过程达到平衡后,萃取液中溶质浓度与萃余液中溶质浓度的比值是常数,这个规律叫分配定律,常数k0叫分配系数。如图10—2所示,在进行第一次萃取时,设原料液中溶质的摩尔浓度为c,萃取相中溶质的摩尔浓度为x,萃余相中溶质的摩尔浓度为y,则:
k0萃取相x(10--1)萃余相y假设进行多次萃取才能将目的产物提取完,则进行第n次萃取时,原料液中的溶质浓度为cn,萃取相中溶质的浓度为xn,萃余相中的浓度为yn,根据分配定律应有:
knxn(10--2)ynxxn所以 k0k1k2=kn(10--3)yyn由此看到 yn0
故随着萃取次数的增加,残留在原料体系中的溶质越来越少,但无论进行多少次萃取,都不可能完全将溶质从原料体系中萃取出来。因此在实际生产过程中,往往要综合考虑萃取操作生产成本,只进行有限次的萃取操作。如在中药提取生产时,一般对中药材进行三次萃取后,有效成分基本上被最大程度的萃取,同时经济上也达到最好的效益。
二、常见萃取流程
在工业生产中,萃取操作有单级萃取、多级错流萃取、多级逆流萃取等流程。
1.单级萃取
将萃取剂加入原料液中只萃取一次的操作方式叫单级萃取。如图10—3所示。具体操作过程是:将原料液和萃取剂都加入到混合器中,用搅拌器搅拌,促使溶质从原料液中转移到萃取剂中,经过一段时间后,静臵分层,用分离器把萃取相和萃余相分离后即完成一个萃取操作周期。
工业上常用液—液单级萃取设备是高速管式离心机和碟片式离心机,进行固液萃取的设备是各种形式的提取罐。
2.多级错流萃取
原料经过多个串联的萃取器,并在每个萃取器中进行萃取操作,这种萃取方式叫多级萃取。按原料的流向与萃取剂的流向关系可分为多级错流萃取、多级逆流萃取、多级平流萃取。图10—4是多级错流萃取示意图。多级错流萃取操作中,原料液从第1级经过第2级流向第3级,最后得到萃余相,萃取剂则由总管道分别注入三个萃取器,原料在每级萃取器经萃取操作后,所得萃取相都回收到同一个储罐中贮存。
在多级错流萃取中由于溶剂分别加入各级萃取器,故萃取推动力较大,萃取效果好,所以在中药提取分离中被广泛采用。其缺点是要加入大量的萃取溶剂,产品浓度稀,蒸发浓缩回收溶剂时需要消耗较多的能量。
3.多级逆流萃取
如果原料的流向从第1级经过若干级后到末级的萃余液,而萃取溶剂从末级逆向流动,经过若干级后到达第1级而得到萃取液,这种萃取操作方式成为多级逆流萃取。一般萃取级数是三级。如青霉素生产中,用乙酸戊酯从澄清的发酵液中分离青霉素时,就采用了三级逆流萃取系统,如图10—5所示。
进行多级逆流萃取的设备主要有:
①由单级混合—澄清器串联组成的多级逆流萃取系统 ②多级筛板塔。
在生物制药生产过程中,萃取是一个非常重要的单元操作,通过萃取可以把目的产物从复杂的体系中提取出来,以便于进行更进一步的纯化分离。
第二节 植物浸取原理
教学目标: 了解植物中目的产物的理化性质。掌握植物浸取常用溶剂的理化性质。理解植物浸取过程基本原理。
掌握植物浸取工艺条件参数的选择依据和方法。教学重点:
植物浸取常用溶剂的理花性质,植物浸取工艺条件参数的选择依据和方法。教学难点:
植物浸取工艺条件参数的选择依据和方法。教学内容:
一、植物中天然产物的理化性质 1.非目的产物
在植物中存在着多种天然大分子物质类,如淀粉、纤维素、木质素、果胶、树脂、鞣质、多肽、蛋白质、酶、核酸等,因为这些分子含有大量的羟基、氨基、羧基等极性基团,因此其分子极性强,在水中溶解度大,用水等极性溶剂提取时容易被浸提出来。但是,非目的产物受热会糊化,影响后续分离纯化操作,因此在提取时要尽量避免将其浸出。
2.目的产物的理化性质
植物中的目的产物有生物碱、苷类、醌、黄酮、香豆素、木脂素、萜类、甾体及其苷类、挥发油、色素物质等,这些物质一般都具有生理活性,因而是中药有效成分。这些物质的分子极性分布范围宽,且从强极性到非极性都有相应的物质存在,因而植物中的有效成分溶解性比较复杂。现分别介绍如下:
生物碱是一类含氮的天然有机化合物,具广泛的生理活性。生物碱分子中的氮原子与氨分子中的氮原子一样,有一对孤电子,对质子有一定程度的亲和力,当与酸反应中和后,氮原子可由三价转为五价而成盐,因而具有碱性。在植物中,大多数生物碱与有机酸结合成盐而存在,少数与无机酸结合成盐而存在,有些生物碱碱性弱,以游离状态存在,还有部分与糖结合成苷类的形式存在。
大多数生物碱不溶或难溶于水,可溶于乙醇、乙醚、丙酮等有机溶剂;生物碱盐类则可溶于水,因此,加入一定的有机酸或无机酸作浸出辅助剂,使生物碱转成盐后,可用水作溶剂提取。
苷类又称配糖体,是糖或糖的衍生物如氨基糖、糖醛酸等,与另一类非糖物质通过糖的端基碳原子连接而成的化合物。其中非糖部分称为苷元或配基,其连接键称为苷键。按化学结构可分为香豆素苷、木脂素苷、蒽醌苷、黄酮苷、吲哚苷等多种,其亲水性随苷元化学结构、所连接糖的种类和数目有较显著的区别,但大多数苷类亲水性强,可用水提取,也可用不同浓度的乙醇提取。
醌类是具有α,β-不饱和酮结构一类化合物,从结构上可分为苯醌、萘醌、菲醌、蒽醌等四类。醌类化合物中含酚羟基团越多,颜色则越深。天然醌类多为有色晶体。苯醌及蒽醌多以游离状态存在,蒽醌往往结合成苷。游离的醌类多具升华性,小分子的苯醌类及茶酮类具有挥发性,能随水蒸汽蒸馏,可因此进行提取、精制。游离酮类多溶于乙醇、乙酸、苯、氯仿等有机溶剂,微溶或不溶于水。而配基成苷后,极性增大,易溶于甲醇、乙醇、热水,几乎不溶于苯、乙醇等非极性溶剂。蒽醌类衍生物多具有酚羟基,故呈酸性,易溶于碱性溶剂。分子中酚羟基的数目及位臵不同,酸性强弱也不一样。
黄酮类化合物的基本母核是无苯基色原酮,有的具有良好的心脑血管药理活性,有的具有抗菌消炎作用,有的具有保肝作用。游离黄酮苷元难溶或不溶于水,易溶于乙醇,可用不同浓度的乙醇提取;黄酮苷类可溶于水也可溶于醇,可用水或不同浓度的乙醇提取。
萜类化合物是由若干异戊二烯结构单元组成的碳氢化合物,可用(c5h8)n表示其分子式,n为大于2的整数。当n是2时称单萜,是3时称倍半萜,是4时称双萜,是5时称二倍半萜,于此类推可对复杂的萜命名。
分子量较小的萜类化合物如单萜和倍半萜多为有特殊气味的挥发性油状液体,其沸点随分子量和双键数量的增加而提高;分子量较大的萜类如二萜、三萜多为固体结晶。萜类化合物大多具有苦味,也有一些萜类化合物有极强的甜味,甜菊苷就是比蔗糖甜100倍的甜味剂。萜类化合物大多不溶于水而易溶于非极性有机溶剂中,如青蒿素溶解于石油醚。萜类化合物成苷后水溶性提高而易溶于热水,另外含有内酯结构的萜类化合物易溶于碱性水溶液中。
香豆素是邻羟基桂皮酸的内酯,其分子结构是以苯骈α-吡喃酮为母核。根据其结构特征可分为四大类,即简单香豆素类,喃喃香豆素类、吡喃香豆素类及其他香豆素类。游离的香豆素多数有较好的结晶,且大多有香味。香豆素中分子量小的有挥发性,能随水蒸汽蒸馏,并能升华。香豆素苷多数无香味和挥发性,也不能升华。游离的香豆素能溶于沸水,难溶于冷水,易溶于甲醇、乙醇、叙情和乙醚;香豆素苷类能溶于水、甲醇和乙醇,而难溶于乙醇等极性小的有机溶剂。香豆素类及其苷因分子中具有内酯环,在强碱溶液中内酯环可以开环生成顺邻羟基桂皮酸盐,但加酸又可重新闭环成为原来的内酯。但如与碱长时间加热,则可转变为稳定的反邻羟基桂皮酸盐。因此用碱液提取香豆素时,必须注意碱液的浓度,并应避免长时间加热,以防破坏内酯环。
木脂素是一类由两分子苯丙素衍生物聚合而成的天然化合物,多数呈游离状态,少数与糖结合成苷而存在于植物的木部和树脂中。多数为无色结晶,一般无挥发性,不能随水蒸气蒸馏,少数木脂素在常压下能升华。游离的木脂素是亲脂性的,一般难溶于水,易溶于乙醇和亲脂性有机溶剂中;具有酚羟基的木脂素可溶于碱性水溶液中。木脂素与糖结合成苷后分子极性增加,在水中的溶解度也增大。
甾体类化合物是广泛存在于自然界中的一类天然化学成分,包括植物甾醇、胆汁酸、c21甾类、昆虫变态激素、强心苷、甾体皂苷、甾体生物碱、蟾毒配基等。其基本结构中母核是环戊烷骈多氢菲。
强心苷多为无定型粉末或者无色结晶,具有旋光性,一般可溶于水、乙醇、丙酮等极性溶剂,微溶于乙酸乙酯、含醇氯仿,几乎不溶于乙醚、苯、石油醚等极性小的溶剂。
挥发油类又称精油,是一类具有挥发性的油状液体,大部分具有香气,如薄荷油、丁香油等。挥发油难溶于水,能完全溶解于无水乙醇、乙醚、氯仿、脂肪油中。在各种不同浓度的含水乙醇中可溶解一定量,乙醇浓度愈小,挥发油溶解的量也愈少。挥发油少量地溶解于水后使水溶液具该挥发油特有的香气。
天然产物的理化性质是植物浸取操作的理论依据,但在设计提取方法时,要进行多次实验,获得最佳的工艺参数,筛选出最可靠的工艺流程。
二、植物浸取常用溶剂 1.溶剂性质
因为提取的植物产品绝大多数是作医、食用原料,所以提取用溶剂必须是“安全、廉价”的,即对有效成分是化学惰性的,对人无毒理反应,能最大程度地浸出目的产物而最小程度地浸出非目的产物,另外,在经济上是廉价的。事实上,同时满足上述条件的溶剂几乎没有。在实际生产过程中,往往是多种溶剂按一定比例混合使用以达到生产要求。
常见溶剂的极性大小排列顺序为:
水 →乙醇→丙酮→乙醚→乙酸乙酯→氯仿→甲苯→石油醚
水:极性大,溶解范围广,价格便宜。植物中多种成分如生物碱盐类、苦味物质、有机酸、蛋白质、单糖和低聚糖、淀粉、菊糖、树脂、果胶、黏液质、色素、维生素、酶和少量挥发油等都能被水溶解浸出。其缺点是选择性差,非目的产物被浸出量大,给纯化操作带来困难。
乙醇:中强极性,能与水以任意比例相混,乙醇浓度越高溶液极性越低。各种目的产物在乙醇中的溶解度随乙醇浓度的变化而变化。90%的乙醇用来浸取挥发油、有机酸、树脂、叶绿素等,50%~70%的乙醇用来浸提生物碱、甙类等,50%以下的乙醇用来浸取苦味物质、蒽醌类化合物。
乙醚:乙醚是非极性溶剂,微溶于水(1:12),可与乙醇及其他有机溶剂任意混溶。选择性强,能溶解生物碱、树脂、挥发油、某些甙类。大部分溶解于水的成分在乙醚中不溶解。缺点是易燃,价格高,有药理副反应,常用于精制提纯,最后要从溶液中完全除去。
氯仿:是非极性溶剂,在水中微溶,与乙醇、乙醚能任意混溶。可溶解生物碱、甙类、挥发油、树脂等,不能溶解蛋白质、鞣质等极性物质。氯仿有强烈的药理作用,应在浸出液中尽量除去。
除此之外,丙酮和石油醚也是常用溶剂,可以用于脱水脱脂和浸取,但有较强挥发性和易燃性,且具有一定的毒性,故应从最后制剂中除去。
2.辅助剂
为提高浸提效果,增加目的产物的溶解度,增加制剂的稳定性,以及除去或减少某些物质,常在浸提溶剂中加入辅助剂。常用辅助剂有酸、碱、表面活性剂。
加入硫酸、盐酸、醋酸、酒石酸、枸橼酸等,可促进生物碱溶解,提高部分生物碱的稳定性,同时可使有机酸游离而易被溶剂萃取。
加入氨水、碳酸钙、碳酸钠、碳酸氢钠等,可增加皂甙、有机酸、黄酮、蒽醌和某些酚性成分的溶解度和稳定性。在含生物碱的浸取液中加碱可使生物碱游离,便于后续萃取。
加入表面活性剂可强化润湿增溶,降低植物材料与溶剂间的界面张力,使润湿角变小,促使溶剂和材料之间的润湿渗透。常用表面活性剂有非离子型、阴离子型、阳离子型,根据植物材料和溶剂确定使用型号。
三、浸取原理 1.植物的细胞结构
细胞是构成植物组织的基本单元,组成植物细壁的主要成分是纤维素,具有刚性,其功能是支持和保护细胞内的原生质体,防止细胞因吸涨而破裂,保持细胞的正常形态。
原生质可分为细胞核、细胞质、质体及线粒体。构成原生质的化学成分有核糖核酸、蛋白质、酶、维生素、淀粉、脂类,细胞的代谢产物有糖类、苷类、生物碱、鞣质、脂肪与蜡、挥发油,他们都存在于原生质中。
在植物细胞壁和原生质体之间的细胞膜,是控制物质进出细胞的门户,它有选择性地让某些分子进入或排出细胞。
中药有效成分提取过程就是将目的产物从细胞植物内转移到细胞外的溶剂中,如果将细胞壁破碎则能最大程度地获得有效成分,但很容易将非目的产物一并提取出来,造成纯化困难。所以在实际生产中,一般不会采用破碎细胞的提取方法,常根据传质过程和传质机理调控有关工艺参数实现最大提取效率。
2.植物浸取过程
浸取就是利用适当溶剂和方式把植物中的有效成分分离出来的操作过程,又称为提取。提取所得到的液体称为浸出液,浓缩干燥后称为浸膏。植物浸取操作属于固液萃取。
当固体与溶剂经过长时间接触后,溶质溶解过程结束,此时固体内空隙中液体的浓度与固体周围液体的浓度相等,液体的组成不再随时间而改变,即固液体系达到平衡状态,这就是一个完整的浸取过程。
完整的浸取过程有以下几个阶段:(1)浸润渗透 溶剂被吸附在植物材料表面,由于液体静压力和植物材料毛细作用,被吸附的溶剂渗透到植物细胞组织内部的过程。溶剂渗透到植物细胞组织中后使干皱的细胞膨胀,恢复细胞壁的通透性,形成通道,能够让目的产物从细胞内扩散出来。
(2)解吸与溶解 由于目的产物各成分在细胞内相互之间有吸附作用,需要破坏吸附力才能溶解。因此溶剂在溶解溶质之前首先要解除吸附作用,即解吸。解吸后溶质进入溶剂即溶解。
(3)扩散 随着细胞内溶质进入溶剂而浓度增大,在细胞内外产生了溶质浓度差,从而产生了渗透压,溶质将进入低浓度溶液中,溶剂将要进入高浓度溶液中,引起溶质从高浓度部位向低浓度部位的扩散过程。扩散可分为内扩散和外扩散两个阶段。内扩散就是细胞内已经进入溶剂中的溶质,随溶剂通过细胞壁转移到细胞外的过程,外扩散就是植物材料和溶剂边界层的溶质传递到溶剂主体中去的过程。
研究表明,在通常浸取条件下,溶剂进入细胞后,溶质的溶解速度很大,但溶质的内扩散速度和外扩散速度较低。提高扩散速度的途径有两条,其一是通过搅拌产生湍流提高外扩散速度;其二是不断用溶剂臵换出固液界面上的浓溶液,始终保持细胞内外高浓度差,促使溶质不断扩散出细胞壁,强化浸取操作。
四、浸取工艺条件
在植物浸取过程中,有多种因素对浸取过程产生重要的影响,影响浸取回收率的高低。这些因素包括温度、压力、酸碱性、颗粒直径、浸取时间、溶剂用量、浸取次数、液体运动状态等。为达到浸取成本低回收率高的浸取效果,必须通过查阅文献资料和做现场实验求出这些因素的最佳参数,作为生产操作时的控制依据。在工程上习惯地把这些参数称为工艺条件。
1.浸出温度
一般来讲,温度升高能使植物组织软化并促进膨胀,增加了可溶性成分的溶解和扩散速度,所以浸取温度越高,浸出速度越快。但温度升高后,某些目的产物不稳定发生分解变质,同时使挥发性目的产物挥发散失。因此,要把浸取温度控制在适当的范围。中药提取时,根据处方情况可把浸取温度控制在100℃以下。
2.浸取时间 浸取过程是一个溶剂进入细胞溶解目的产物并向外扩散的过程,浸取所需时间长短视植物材料本身结构和溶剂性质而定。如果原材料的组织结构细密,溶质扩散速度慢,所需时间就长,如果所用植物材料的组织疏松则所需时间就短。溶剂穿透力强且对目的产物溶解性好则所需时间短,反之则长。浸取所用时间的长短要通过中试实验来确定,一般每批中药材提取的时间大约是2—4个小时。
3.操作压力
植物提取一般是在常压沸点下进行,但对于溶剂较难渗透到植物组织内部的浸出操作,提高压力有利于浸出过程,因为在较高压力下植物组织内部细胞被破坏,加速了润湿渗透过程,使只组织内部毛细孔更快地充满溶剂,有利于溶质扩散。超临界萃取就属于加压浸取。对于组织疏松的材料可不用加压操作,因影响浸出速度的主要因素是扩散过程,加大压力对提高浸出速度无显著效果。
4.溶剂ph值
在目的产物浸出过程中,溶剂的ph值对浸出速度有影响。某些目的产物可溶解于酸性溶剂,则要使用酸性溶剂浸提,有些目的产物易溶解于碱性溶液因而要选择碱性溶剂提取。根据目的产物的酸碱性质可确定提取过程中溶剂ph值的范围。
5.溶剂用量
可用萃取公式进行理论计算再经过实验校验后即可得到溶剂的用量。在工业生产中,经验公式和经验值是技术操作的参数依据,一般溶剂用量是原材料的2~5倍,经过三次浸取就可认为提取完成。
6.溶剂流动状态
因在浸取过程中控制速度的关键步骤是扩散阶段,因此可以通过产生错流或湍流,不断地将植物材料表面上高浓度的溶液与低浓度的溶液混合而使溶质被扩散,保持细胞内外高渗透压,提高扩散速度。通过搅拌或者用离心泵强制溶剂流动可达到提高扩散速度的目的。
7.预浸泡
植物材料多是处于干燥状态,在正式浸取前需要预浸泡,使植物组织软化和细胞壁被浸润而膨胀,便于浸取时溶质的加速溶解和扩散。
第三节 植物提取操作方法 教学目标:
掌握植物浸取煎煮工艺、浸渍工艺、渗漉工艺、回流提取工艺、压榨工艺的原理、工艺过程及设备结构。
掌握各种工艺规程的操作方法。
初步掌握根据不同原材料选用不同的极取工艺的方法。教学重点:
植物浸取工艺过程、设备结构及操作方法。教学难点: 工艺原理及选用。教学内容:
一、煎煮提取工艺
将植物用水加热煮沸一定时间提取目的产物的方法称为煎煮法。这是一种传统方法,可分为常压煎煮法、加压煎煮法、减压煎煮法。常压煎煮法是应用得最广泛的方法。煎煮法适合于目的产物可溶于水,且对加热不敏感的植物材料。
1.工艺操作过程
煎煮提取工艺操作过程是:将预处理了植物材料装入煎煮容器中,用水浸没原材料,待植物材料软化润胀后,用直接蒸汽加热至沸腾,然后改用间接蒸汽加热,保持微沸状态,经过一定时间后将浸取液通过筛网过滤装入贮液罐,用新鲜水重复三次,合并浸取液,静臵过夜,沉淀过滤,所得滤液即浸提液经浓缩干燥即得提取物。
2.煎煮设备
煎煮设备可分为传统煎煮器、密闭煎煮器、强制循环煎煮器、多能提取罐等四种类型。
在植物提取生产中现已经不再使用传统煎煮器,广泛使用的是多功能提取罐。多功能提取罐可以进行多种方法的浸取操作。
二、浸渍提取工艺 浸渍法属于静态提取方法,是将已预处理过的植物材料装入密闭容器在常温或加热条件下进行浸取目的产物的操作过程。
通过浸渍法所得的浸取液在不低于浸渍温度下能较好地保持其澄清度,操作简单易行,其缺点是时间长,溶剂用量大,浸出效率低。
浸渍法工艺流程如下:
1.操作过程
按照操作温度不同,浸渍法可分为冷浸法和热浸法。
冷浸法 在室温或更低温度下进行的浸渍操作。一般是将植物材料装入密闭浸渍器中,加入溶剂后密闭,于室温下浸泡3~5日或更长的时间,适当振动或搅拌。到规定时间后过滤浸出液,压榨残渣,使残液析出,将压榨液与滤液合并,静臵一天后再过滤得浸出液待用。
热浸法 热浸法与冷浸法相比,只是当植物材料被装入密闭容器后需 通蒸汽加热,其他操作相似。在热浸法中如使用乙醇作溶剂,浸渍温度应控制 在40℃~60℃的范围内,如果是用水作溶剂,浸渍温度可以控制在60℃~80℃的范围。
热浸法可大幅度缩短时间,提高了浸取效率,但提取出的杂质较多,浸取液澄清度差,冷却后有沉淀析出,需要精制。
2.浸渍设备
浸渍法所使用的设备主要是浸渍器和压榨器。各种多功能提取罐都可以作浸渍器使用。
三、渗漉提取工艺 将植物材料粉碎后装入上大下小的渗漉筒或渗漉罐中,用溶剂边浸泡边流出的连续浸取过程称为渗漉。在渗漉过程中,溶剂从上方加入,连续流过植物材料而不断溶出溶质,溶剂中溶质浓度从小增大,到最后以高浓度溶液流出。
渗漉法提取过程类似多次浸出过程,浸出液可以达到较高的浓度,浸出效果好。同时,渗漉法不需加热,溶剂用量少,过滤要求低,适用于热敏性、易挥发和剧毒物质的提取,使用渗漉法可以进行含量低但要求有较高提取浓度的植物提取。但不适用于黏度高、流动性差的物料的提取。
现将有关渗漉法的操作工艺流程和操作方法介绍如下: 1.工艺流程 2.操作过程
首先将植物材料净选后进行前处理,并粉碎成要求的规格。颗粒规格一般是中粗级,对于切片要求厚度为0.5mm。原材料颗粒太细,溶剂难以通过而影响浸取速度。其次用0.7~1倍量的溶剂浸润原材料4小时左右,待原材料组织润胀后将其装入渗漉罐中,将料层压平均匀,用滤纸或纱布盖料,再覆盖盖板,以免原材料浮起。再次浸渍排气。将原材料装入罐后,打开底部阀门,从罐上方加入溶剂,将原材料颗粒之间的空气向下排出,待空气排完后关闭底部阀门,继续加溶剂至超过液面5~8厘米,加盖放臵24~48小时。最后将溶剂从罐上方连续加入罐中,打开底部阀门,调整流速,进行渗漉浸取。
3.常见渗漉设备
渗漉设备常用渗漉筒或渗漉罐,现在也有厂家采用多能提取罐进行渗漉浸取。
四、回流提取工艺
回流法是用乙醇等易挥发的有机溶剂进行加热浸取的方法。当有机溶剂在提取罐中受热后蒸发,其蒸汽被引入到冷凝器中再次冷凝成液体并回流到提取罐中继续进行浸取操作,直至目的产物被提取完成为止。
回流提取法本质上是浸渍法,可分为热回流提取和循环提取,其工艺特点是溶剂循环使用,浸取更加完全。缺点是由于加热时间长,故不适用于热敏性物料和挥发性物料的提取。
进行回流提取的装臵是多功能提取罐,图10—11是多功能中药提取罐回流提取工艺流程示意图。
五、压榨提取工艺
用机械加压的方法使液固组织发生体积变化而组织破碎,并使液体与固体组织分离的过程,称为压榨提取法。压榨提取法是古老的植物提取法。现在制糖、榨油、果汁、香油、食用色素提取等行业仍然广泛地使用。
压榨提取法的优点是不破坏目的产物的组成和结构,能保持目的产物本来的组成成分物理化学性质不改变,因而主要用于热敏性物质、水溶性的氨基酸、蛋白质、酶、食用风味物质、食用色素、植物油等目的产物的提取。
1.水溶性物质的榨取方法
本法榨取的是氨基酸、酶、蛋白质、多糖、色素果汁等。所用植物原材料是新鲜材料,采用干压榨或湿压榨法榨取。干压榨法是在榨取过程中不加水洗涤原材料,施加压力直至无液体流出为止。干压榨法提取率不高,正逐渐被淘汰。现广泛使用的是湿压榨法,即在压榨过程中不断加水洗涤原材料,直到把目的产物全部榨取出来为止。
在进行湿压榨法前要把原材料洗涤干净无杂质,并用粉碎机粉碎成浆状,然后装筐或装袋进行压榨。
压榨提取法使用的机械设备分为间歇和连续式两种。间歇式压榨机有水平向挤压机和竖直向压榨机,连续式压榨机主要有螺旋压榨机,水平带式压榨机。在植物提取中使用较多的是螺旋压榨机。
2.脂溶性物质的榨取法
本法榨取的是油脂、挥发油、油溶性成分。所使用的植物原材料一般是种子、果实、皮等。榨取前原材料要经过剥壳、蒸炒,使组织细胞破坏,将原材料装袋或筐后上机压榨。在压榨过程中原材料发生变化主要是物理变化,经过了物料变形、油脂分离、摩擦发热和水分蒸发等过程。压榨时,料胚在压力作用下,组织的内部表面相互挤压,使油脂不断从料胚孔中被挤压出来,同时原材料在高压下形成坚硬的油饼,物料粒子表面渐趋挤紧,直到挤压表面留下单分子层形成表面油膜,致使饼中残油无法被挤压出来。
另外,药用挥发性油的压榨提取还可通过挫榨法进行榨取。
第四节 中药提取浓缩生产流程
教学目标:
掌握中药提取浓缩相关设备的结构及操作方法。理解中药提取浓缩生产流程设计原理。掌握提取浓缩生产流程的操作方法。教学重点:
中药提取浓缩相关设备的结构及操作方法。中药提取浓缩生产操作规程。教学难点:
中药提取浓缩生产流程设计原理。教学内容:
一、提取罐的结构
进行中药提取的设备又称为提取罐。按照外观造型可将提取罐分为五种形式,既直筒式提取罐,蘑菇形提取罐,正锥形提取罐,斜锥形提取罐,搅拌式提取罐。目前普遍采用小直径直筒式提取罐,其结构特点是中间切线循环,采用夹套和直接蒸汽加热,底部加热沸腾,上下同径,阻力小出料顺畅,结构简单,造价低廉。
蘑菇形提取罐筒体上大下小,上部空间大可防止暴沸。传热快,切线循环,动态效果好。因顶部配有清洗球可进行全方位清洗。采用夹套和底部加热,可保持浸取液沸腾状态。缺点制造难度大,价格高。
正锥式提取罐筒体直径大,底部直径小,出料口密封性好,但出渣时往往需要人辅助出料。加热时采用夹套方式进行。斜锥式提取罐与正锥式提取罐结构和性能基本相同,但阻力小,出料时较正锥式提取罐容易。
搅拌式提取罐是在蘑菇形提取罐基础之上发展起来的。在提取罐顶部安装了搅拌器,通过搅拌器的搅动促使溶剂流动,形成动态提取,改善了物料和溶剂接触状态,提高了溶质浸取速度。但机械搅拌对原材料和被提取物都有一定的要求,选用时要予以注意。
二、提取罐操作规程
可作为植物提取的设备是多种多样的,各种设备都有其工艺操作条件、原料特性和技术特点,要根据具体情况进行综合分析后选用设备。一般来讲,采用煎煮法提取时多采用蘑菇形提取罐、直锥式提取罐和搅拌式提取罐。浸渍提取时,通常采用带有搅拌或泵循环的浸渍器。
在生产中只采用一个提取罐进行提取的工艺流程称为单罐提取。现以水提取为例说明单罐提取操作规程和安全事项,如图10—14所示。
(1)加入药材
开启空压机观察压力表,调整压力表读数大于0.6mpa,打开压缩进气阀、操作气动阀,用启动气缸把出渣门关闭,用锁紧气缸把门锁紧,用保险气缸把出渣门销住。从投料口假如中药材,关闭投料口。(2)加入溶剂
打开冷却水阀门使冷却器正常工作,打开回流阀、测压阀使罐内和大气相通,打开进溶剂阀、切线循环阀,气动离心泵向罐内定量注入溶剂。
(3)通入蒸汽
打开蒸汽进气阀、筒体夹套蒸汽阀、底部蒸汽阀、蒸汽冷凝水管连接阀、冷凝水旁通阀、底部整齐冷凝水阀。然后打开疏水器阀,关闭冷凝水旁通阀,及时观察罐内提取温度及压力,沸腾后关闭夹套蒸汽阀,用底部蒸汽阀加热维持沸腾,一直达到工艺要求时间。
(4)循环提取
通如入整齐后,打开底部出液阀、切线循环阀,启动离心泵进行顺流循环,然后打开上提取液出液阀、逆流循环阀,关闭切线阀、底部出液阀,进行逆流循环。
(5)芳香油回收
开启溶剂回流阀、收油回流阀、放空阀,关闭回流阀v2,通过油水分离器上的视镜观察油面,打开收油阀v10、调节回流阀控制收取轻油,通过控制阀v8收取重油。
(6)出液
关闭蒸汽系统各阀门,打开底部出液阀v32、过滤阀v24,关闭逆流循环阀v29、上提取出液阀v30,启动离心泵将提取液通过过滤器送入储液罐。
(7)出渣
提取完成后,依次关闭各功能阀,操作启动阀p1,退出安全销后松开阀p2紧锁块,打开阀p3使出渣门缓缓打开,使药渣落下。
(8)冲洗
打开逆流循环阀v29,用温水冲洗罐内及出渣门密封条等,开自来水阀冲洗提取罐及软管。
(9)记录
要详细及时记录好生产各数据,为生产管理提供依据。注意事项:
在生产过程中需要注意罐内的压力变化情况,按规定允许使用压力。罐体及出渣门夹套使用蒸汽压力≤0.3mpa;罐内压力为常压;气缸使用压缩空气压力0.7mpa。严禁罐内超压使用。
三、典型的纯化工艺流程
根据目的产物和杂质的理化性质,对提取液的纯化方式多种多样。最常见的方法有沉淀、大孔树脂吸附、离子交换、结晶等方法。在中药制药工业化生产过程中,通常采用水或者乙醇将杂质沉淀后静臵过夜,然后再过滤得澄清液的工艺流程,也有采用大孔树脂吸附法进行精制的。比较典型的中药提取液纯化工艺流程是提取法与纯化方法的有机结合,主要有水提醇沉法和醇提水沉法两种。
1.水提醇沉法
用水提取浓缩后,向提取液中加入一定浓度的乙醇,沉淀过滤去除杂质的方法称为水提醇沉法。在本法的基本原理是,中药有效成分如生物碱、苷、有机酸、多糖等易溶于水和乙醇,而蛋白质、淀粉、粘液质、数胶、和无机盐等杂质均不溶解于高浓度的乙醇。加入高浓度乙醇既能通过沉淀去除杂质,同时也保留了既溶于水又溶于乙醇的中药有效成分。
在实际操作中加入的乙醇量要准确,当溶液中乙醇的浓度在50%~60%时,可去除淀粉杂质,含醇量达75%时,可除去蛋白质等杂质,当含醇量达80%时,几乎可除去全部蛋白质和多糖、无机盐类杂质。
2.醇提水沉法
醇提水沉法的基本原理与水提醇沉法大致相同。其不同之处是先用70%~90%的乙醇提取静臵滤过,经蒸馏回收乙醇后再冷藏滤过则可将沉淀去除。用乙醇提取的优点是减少生药中粘液质、淀粉、蛋白质、树脂等的溶出,简化了后续纯化操作,同时因操作工序少,药液受热时间短,有效成分损失小。其缺点是不能将鞣质彻底除掉,颜色较水提醇沉法深,可能是乙醇提出的脂溶性色素较多之故。
除以上介绍的除去杂质的方法外,还有用5%~10%的明胶溶液、20%~30%的石灰乳作沉淀剂去杂、用大孔树脂吸附有效成分去杂以及其他去杂等方法,本课程不对这部分内容作深入讨论。
四、中药提取浓缩生产线
由于待提取的目的产物存在的形式和其理化性质不同,植物提取纯化方法也就不同。按照使用的溶剂的种类,可把中药提取分为水提取法、醇提取法和其他有机溶剂提取法;如果按照溶剂在提取罐中的运动状态,可分为静态提取法和动态提取法。中药提取浓缩生产线包括提取、纯化、浓缩、干燥四个操作单元,根据提取时溶剂的流动状态,可将中药提取生产线分为静态提取和动态提取两种。
1.中药静态提取浓缩生产线
中药静态提取浓缩生产线的特点是,提取罐中的药材和溶剂处于相对的静止状态,这种方法设备投资少、维修率低、提取效率较低。其提取生产线设备组成是:多能式中药提取罐、冷却冷凝器、离心泵、翅片过滤器、储罐、浓缩罐、真空干燥器、精馏塔、醇沉罐、射流真空泵等。如图10—15所示。静态提取浓缩生产线是传统中药生产线,正逐渐被动态提取法淘汰。
2.中药动态提取生产线
中药动态提取生产的全过程是:溶剂进入多功能提取罐中浸提药材后,所得浸提液经高速离心机离心过滤后,得到可直接用于口服液制剂的中药液体,整个生产过程可连续不断地进行,药材与溶剂发生相对的流动。
中药动态提取生产线设备组成有:
(1)提取装臵:提取装臵为动态多能式中药提取罐,采用热水温浸动态提取工艺,并用板式换热器对进入提取关的溶剂水进行预热。本提取工艺提取温度95℃,浸提时间较短。药材与溶剂处于一种相对运动,有利于有效成分的溶出。
(2)固液分离装臵:采用三级分离工艺,用外溢式三足离心机、液体振荡筛、管式高速离心机对中药提取液进行三次分离,使药渣和3m以上的悬浮微粒被分离除去,所得药液澄明度好,同时避免了后续蒸发浓缩过程结焦粘壁和管道堵塞等问题。
(3)蒸发浓缩装臵:采用单效或三效真空蒸发器浓缩蒸发。
(4)喷雾干燥:离心喷雾干燥机干燥时间短,产品粒度均匀,水溶性好,目的产物活性损失小,是当今制药企业广泛采用的干燥设备。经浓缩后的药液可直接送入离心喷雾干燥机中干燥。
第五节 中药提取车间布臵设计 教学目标:
理解gmp对车间卫生的具体要求,掌握中药提取浓缩生产车间卫生等级标准。
掌握中药提取浓缩生产流程平面布臵和立面布臵的一般要求。了解非工艺流程的设计内容。教学重点:
中药提取浓缩生产流程平面布臵和立面布臵设计。教学难点:
中药提取浓缩生产流程设计原理。教学内容:
一、中药提取车间的卫生
中药提取车间不同的工段对车间卫生的要求是不一样的,全部生产过程的前处理段、提取段、浓缩段可在非洁净区域进行,其余四个工段必须在30万级以上的洁净车间内完成。
二、提取车间布臵设计 1.车间平面布臵的原则
平面设计包括总体设计和车间平面布臵。在总体设计时要对厂区进行生产区、行政区、辅助区、生活区的合理划分。同时对建筑物及构造物的位臵、堆场、管线等作出合理的安排,确保安全卫生沐浴保障生产的顺利进行。
在完成总平面布局设计和工艺流程设计后,即可进行车间布臵设计。车间平面布臵设计要遵守三个方面的原则。
(1)车间平面布臵设计的一般要求
厂房的布臵形式要符合产品特点。制药车间主要有集中式和分散式两种。集中式是指将生产各工序及辅助设施集中在一栋厂房内,这是制药车间主要形式;分散式就是将全部或一部分工序及辅助设施分散布臵在单独的厂房内。在具体应用时,生产规模小的车间各工序联系紧密,应优先考虑集中式布臵;生产规模大的车间,各生产工序特点有明显的差异,可考虑分散式布臵。
生产车间有各工序用室、控制室组成;辅助用室有空调、动力、配电、机修、检验室等;生活行政用室有车间办公室、会议室、厕所等;其他特殊用室有沐浴室、风淋室、风淋通道等。
车间内的设备布臵基本原则是:保证工艺流程顺利进行,具有相同卫生要求的设备集中布臵,相同用途、同类型的、操作中有关的设备应尽量集中布臵,布臵设备时应排列整齐,留有适当距离,物料输送的距离和设备间的管路应尽可能短,避免管线与物料输送路线交叉往返。在采光以自然光为主的车间内,布臵设备时应尽量做到背光操作,高大设备要避免靠窗布臵,以免影响采光。洁净室内要求洁净度较高的设备应布臵在靠近进风口的主气流附近。
(2)提取车间平面布臵的原则
提取车间平面布臵设计的总体要求是布臵合理、紧凑,能避免人流物流混杂,满足gmp要求。具体原则是:
车间内通道专用,人与物的电梯分开、出入口分开,原料与成品出入口分开;人与物分别设臵净化室,净化室洁净级别符合要求;操作区内只允许防止与操作有关的资料,设臵必要的工艺设备。用于制造贮存的区域不得用作非本区域内工作人员的通道。
洁净室的布臵设计遵循以下原则:高等级洁净区布臵在人员最少到达的地方,并宜靠近空调房;空气洁净度相同的房间要相对集中;不同空气洁净度房间或区域按洁净度由高到低从里到外的顺序布臵,并要有防止污染措施,如设臵气闸室、空区吹淋室或传递窗。
辅助设施的布臵要求是:原材料、半成品存放室与生产区的距离要尽量缩短,减少涂中污染;所有存放室面积大小要与生产规模想适应。称量室宜靠近原辅料存放室,其洁净级别与配料室相同;提取车间的洗涤室可布臵在非洁净区。洁净工作服的洗涤室、干燥室的洁净级别可低于生产区一个等级;维修保养室不宜设臵在洁净生产区内。
(3)中药提取车间洁净区设臵男女更衣室各一道,并根据需要设臵消毒设备。
2.车间布臵 车间的布臵分为平面布臵和立面布臵。平面布臵是指把设备如何排列在车间地平面上,立面布臵是指把各种设备放臵在何种高度的空间中。在进行车间布臵时,为表示各种设备相互之间的平面和空间位臵关系,应绘制平面布臵图和立面布臵图,并在其中标明平面距离和空间高度距离。
布臵设计时,要认真熟悉车间布臵设计图,并同工艺员一起仔细分析工艺参数,确定生产设备;充分考虑空间的合理利用,按生产工段需要划分不同的空间区域,做到立体交叉清晰;充分考虑进行设备维修空间(包括设备吊装、更换、维修)、控制操作、管网布臵、人流和物流通道等所需空间,并注意到工人操作安全、便捷,能减轻工人劳动强度。通过全盘的周密考虑,绘制出车间平面布臵图和立面布臵图,并提出非工艺设计的基本要求。
在本书附录中图1是年处理中药材3000吨的中药提取工艺流程实例图,在本例中采用了双罐提取流程,图2是车间平面布臵图,图3是立面布臵图。
三、提取车间非工艺设计简介
制药车间的非工艺设计指公用系统和非工艺项目,如土建、给排水、采暖通风、设备安装、管道、电子电气与仪表控制、防腐与保温、环境与安全卫生、经济分析等项目的设计,进行非工艺设计必须由工艺设计人员向非工艺设计人员突出设计要求和设计条件,非工艺设计人员根据这些要求和条件进行非工艺项目设计。本书只重点介绍与洁净室相关的建筑设计。
1.建筑设计项目
药厂建筑物按承重结构材料可分为钢筋混凝土结构、混合结构,按结构形式可分为叠砌式、框架式、内框式。药厂的建筑等级耐久性一般是3~4级,使用年限一般规定为40年左右,常要求耐火等级是四级。建筑设计的主要内容是地基与基础、柱梁、楼地面层、楼梯、屋顶、围护门窗等构件。
2.洁净车间的建筑设计
在中药提取生产段对车间洁净程度的要求是30万级,所以进行建筑设计时要以《药品质量管理规范》为依据,对地板、门窗、墙角、转角、天花板、地漏等项目的建筑材料和建筑形式进行精心设计,以便符合gmp认证和验证的需要。
(1)洁净车间要具有密闭性
室内的颗粒和微生物的数量都被控制在一定范围的车间叫洁净车间。洁净车间是密闭的,未经净化处理的空气不能进入。因此在设计时,如果墙壁上有窗户则要特别注意密闭性的需要。
(2)精心选择建筑材料
人和任何其他物体都会发尘,洁净室用建筑材料的发尘数量应该最小,所以普通的砖、石和混凝土不能使用,地板砖和瓷砖也难以满足需要。天花板和、墙壁的材料,一般采用彩色钢板;地板材料常用的是耐酸碱并能防火的高分子材料,采用自流坪技术铺成。门窗材料可以使用塑钢和玻璃。
(3)转角设计
为防止积累颗粒和残留微生物,同时便于清洗消毒,墙壁与地板和天花板的结合部、房间转角墙壁与墙壁结合部必须是圆结合,不能直角结合。
(4)门窗设计
门框不设门槛,关闭要严密,朝向洁净度高的一面开启,不宜采用侧拉门和吊门,严禁采用转门,至少有两个或更多的安全出口。
窗内壁与室内壁平滑衔接,不得有沟缝存在。(5)技术夹层
根据gmp要求,一些辅助设备不能暴露在车间内空气中,需要设计技术夹层将他们隔离。这也便于设备维修。
以上是洁净车间建筑设计的主要要求,在实际设计工作中,对洁净车间的建筑要求内容更多,项目更细,这需要设计人员认真理解《药品质量管理规范》的具体要求,通过设计实践掌握车间非工艺设计方法。
萃取分液教学设计 萃取和分液实验操作篇四
9.16 分组分解法
上海市民办中芯学校
张莉莉 教学目标:
1.理解分组分解法在因式分解中的重要意义.
2.在运用分组分解法分解因式时,会筛选合理 的分组方案. 3.能综合运用各种方法完成因式分解.
教学重点: 理解分组分解法的概念.掌握用分组分解法分解含有四项的多项式.教学难点: 筛选合理的分组方案和综合运用各种方法完成因式分解 教学过程: 一
复习引入
1.什么是因式分解?
2.学过几种因式分解的方法?
3.思考:如何将多项式(1)axaybxby分解因式?
二
新知探究
环节1
内容 :因式分解(1)axaybxby
教师:提出问题
指导学生一题多解
引入定义
学生:思考 回答 板书练习
意图:1.通过一题多解,培养学生的发散思维
2.使学生整体感悟因式分解的方法,再局部的把握知识。
3.探索 讨论 总结分组的原则
要点:对于四项式的各项没有共同的公因式,而且也没有供四项式作
分解的公式可用,所以用我们前面学过的基本方法都无法直接达到分解的目的.但如果分组后在局部分别分解,然后在组与组直接再看看有没有公因式,就可以创造整体分解的机会.
试一试:分解因式(1)
xy2xy2
(2)abab1
22(4)x4yx2y
(4)9ab3ab
22环节2
如何将多项式(2)a2abb1分解因式?
教师:提出问题:两两分组可行吗?多项式有什么特征?
学生:尝试 探索 总结
意图:拓展学生的思维 再一次认识如何合理分组? 要点:组和组之间存在平方差的联系
巩固练习:(1)x10xy25yx5y
(2)a3aab3b
222(3)x2xa2a 22
三
课堂小结:引导学生从知识,技能,方法,整体等方面自主小结如何合理分组,教师点评,总结
四
作业布置:练习册:9.16
补充思考题:
环节3 巩固练习:
1.多项式x2yxyx运用分组分解法分解因式,分组正确的是()a.(x2y)(xyx)
b.(x2xy)(yx)c.x2(yxyx)
d.(x2yxy)x
2.多项式x-a-2a1运用分组分解法分解因式,分组正确的是()a.(x2-a2)(-2a1)
b.x2-(a22a1)c.(x2-a2-2a)1
d.(x2-2a)(-a21)
3.多项式 x2xy2y运用分组分解法分解因式,分组正确的是()22a.(x2x)(y2y)
b.(x2y2)(xy)
c.(x2y)(y2x)
d.(x2xy)y2 5.因式分解.(1)abab1
(2)a2abacbcb(3)x2x4y22y
(4)a4b12bc9c
教师:指导学生分组的方法不唯一,而合理地选择分组方案,会使分解过程简单.学生:实践巩固 应用问题 意图:举一反三 触类旁通
注意:分组的方法不唯一,而合理地选择分组方案,会使分解过程简单.三 归纳小结
渗透学法
22222按字母分组四项多项式如何分组?两两分组
符合平方差公式的两项分组差公式三一分组先完全平方公式后平方作业布置:练习册9.16 补充思考题:
(1)x4y
(2)x3xy36y
22(3)x-4xy4y2x-4y
(4)18a32b18a24b
22444224提示:(3)是三项多项式,但不是完全平方式的形式,也不能用十字相乘法分解,应该怎么处理?可以在原式的基础上增减项使得配成完全平方式的形式
x43x2y236y4x412x2y236y49x2y2(x412x2y236y4)9x2y2(4)的思路同(3)
(1)把有公因式的各项归为一组,并使组之间产生新的公因式,这是正确分组的关键,因此,设计分组方案是否有效要有预见性.(2)分组的方法不唯一,而合理地选择分组方案,会使分解过程简单.(3)分组时要用到添括号法则,注意添加带有“-”号的括号时,括号内每项的符号都要改变.(4)实际上,分组只是为完成分解创造条件,并没有直接达到分解的目的.
把一个多项式化成几个整式的积的形式,这种式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
提公因式法¨22)平方差公式:ab(ab)(ab(适用两项的多项式)公式法222完全平方公式:a2abb(ab)(适用三项的多项式)十字相乘法(适用三项的多项式)
【分析】(1)这是一个四项式,它的各项没有公因式,而且也没有供四项式作分解的公式可用,所以用我们前面学过的基本方法都无法直接达到分解的目的.但是,如果分组后在局部分别分解,就可以创造整体分解的机会.(2)符合公式的两项分组
(3)观察多项式,前三项符合完全平方公式
要点:分组后组间能分解因式
萃取分液教学设计 萃取和分液实验操作篇五
制备蒸馏水实验
1.实验目的:
1.1 初步学会装配简单仪器装置的方法;
1.2 掌握蒸馏实验的操作技能;
1.3 学会制取蒸馏水的实验方法。
2.实验原理: 蒸馏法是目前实验室中广泛采用的制备实验室用水的方法。将原料水加工蒸馏就得到蒸馏水。由于绝大部分无机盐类不挥发,所以蒸馏水中除去了大部分无机盐类,适用于一般的实验室工作。
目前使用的蒸馏水器,小型的多用玻璃制造,较大型的用铜制成。由于蒸馏器的材质不同,带入蒸馏水中的杂质也不同。用玻璃蒸馏器制得的蒸馏水含有较多的na+、sio等离子。用铜蒸馏器制得的蒸馏水通常含有较多的cu等。蒸馏水中通常海涵有一些其他杂质,如:二氧化碳及某些低沸点易挥发物,随着水蒸气进入蒸馏水中;少量液态水呈雾状飞出,直接进入蒸馏水中;微量的冷凝器材料成分也能带入蒸馏水中。因此,一次蒸馏水只能作为一般分析用。
利用水的沸点较低,用蒸馏的方式与其他杂质分离开来而得到的蒸馏水。
3.实验仪器:
三口瓶、冷凝管、万能夹、变向夹、支管、回流管、铁架台、温度计、胶皮管、弯曲管、量筒、升降台、塞子、玻璃塞口、加热炉。4.实验步骤:
制备好蒸馏冷凝装置后,在三口瓶里加三分之二的水,胶管一边接自来水一边排废水,加热,沸腾后蒸馏水就会冷凝在量筒里。5.实验数据记录:
温度℃ 22 27 32 37 98 101 101 101 101 101 101 101 101 101 101
时间10:40 10:42 10:44 10:46 10:46 10:48 10:50 10:52 10:54 10:56 10:58 11:00 11:02 11:04 11:06
蒸馏出水v
0 0 0 0 第一滴 10 20 30 40 50 60 70 80 90 100
6.结果讨论:
经以上实验我得出以下结论:
水加热后以每两分钟上升5℃的速度上升至37℃,水迅速沸腾升温至98℃并且冷凝出第一滴蒸馏水,接下来温度大约在101℃左右以二分钟每10ml的速度蒸馏至100ml,本实验耗水量较大,比较浪费水资源,速度也比较慢。