在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
等腰三角形的性质说课稿全国一等奖篇一
重点与难点分析:
本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。
本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知、求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。
教法建议:
(1)发现问题
(2)解决问题
(3)加深理解
1.掌握定理的证明及这个定理的两个推论;
2.会运用证明线段相等;
3.使学生掌握一般文字题的证明;
4.通过文字题的证明,提高学生几何三种语言的互译能力;
5.逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;
直尺,微机
:问题探究法
1、 性质定理的发现与证明
(1)投影显示:
(2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?
2、推论1的发现与证明
投影显示:
由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边.
学生口述证明过程.
教师指出:等腰三角形的顶角的平分线,底边上的中线、底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。
3、推论2的发现与证明
投影显示:
4、定理及其推论的应用
解:(1) (2)另外两内角分别为: (3)
小结:渗透分类思想,培养思维的严密性.
求证:bd=ce
证明:作af⊥bc,,垂足为f,则af⊥de
∵ab=ac,ad=ae(已知)
af⊥bc,af⊥de(辅助线作法)
∴bf=cf,df=ef(等腰三角形底边上的高与底边上的中线互相重合)
∴bd=ce
求证: p=
证明:连结oc
在△bpd和△bcd中
在△adc和△bcd中
因此, p=
例4 求证:等腰三角形两腰上中线的交点到底边两端点的距离相等
求证:bf=cf
证明:∵bd、ce是△abc的两条中线,ab=ac
∴ad=ae,be=cd
在△abd和△ace中
∴△abd≌△ace
∴ 1= 2
在△bef和△ced中
∴△bef≌△ced
∴bf=fc
5、反馈练习:
出示图形及题目:
将实际问题化,培养学生应用能力。
6、课堂小结:
教师引导学生小结
(1)、
(2)、等边三角形的性质
(3)、文字证明题的书写步骤
7、布置作业 :
a、 书面作业 p96#1、2
b、 上交作业 p96#4、7、8
c、 思考题:
求证:ef⊥bc
证明 : 作bc边上的高am,m为垂足
∵am⊥bc
∴∠bam=∠cam
又∵∠bac为△aef的外角
∴∠bac =∠e+∠efa
即∠bam+∠cam=∠e=∠efa
∵∠aef=∠afe
∴∠cam=∠e
∴ef∥am
∵am⊥bc
∴ef⊥bc
等腰三角形的性质说课稿全国一等奖篇二
重点与难点分析:
本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。
本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知、求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。
教法建议:
(1)发现问题
(2)解决问题
(3)加深理解
1.掌握定理的证明及这个定理的两个推论;
2.会运用证明线段相等;
3.使学生掌握一般文字题的证明;
4.通过文字题的证明,提高学生几何三种语言的互译能力;
5.逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;
6.渗透对称的数学思想,培养学生数学应用的观点;
1、 性质定理的发现与证明
(1)投影显示:
(2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?
2、推论1的发现与证明
投影显示:
由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边.
学生口述证明过程.
指出:等腰三角形的顶角的平分线,底边上的中线、底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。
3、推论2的发现与证明
投影显示:
4、定理及其推论的应用
解:(1) (2)另外两内角分别为: (3)
小结:渗透分类思想,培养思维的严密性.
求证:bd=ce
证明:作af⊥bc,,垂足为f,则af⊥de
∵ab=ac,ad=ae(已知)
af⊥bc,af⊥de(辅助线作法)
∴bf=cf,df=ef(等腰三角形底边上的高与底边上的中线互相重合)
∴bd=ce
第 1 2 页
等腰三角形的性质说课稿全国一等奖篇三
几何第二册第三章,3.12第2——4页
教学目标
(1)知识目标:1、掌握等腰三角形的两底角相等,底边上的高、
它们进行有关的论证和计算。
的联系。
(2)能力目标:1、定理的引入培养学生对命题的抽象概括能力,
加强发散思维的训练。
2、定理的证明培养大胆创新、敢于求异、勇于
探索的精神和能力,形成良好的思维品质。
3、定理的应用,培养学生进行独立思考,提高独
立解决问题的能力。
(3)情感目标:在教学过程 中,引导学生进行规律的再发现,激发
学生的审美情感,与现实生活有关的实际问题使
学生认识到数学对于外部世界的完善与和谐,使
他们有效地获取真知,发展理性。
教学难点 用文字语言叙述的几何命题的证明及辅助线的添加。
达标进程
教学内容
教师活动
学生活动
一、 前置诊断,开辟道路
1、什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
首先教师提问了解前置知识掌握情况。
动脑思考、口答。
二、 构设悬念,创设情境
1、一般三角形有哪些性质?
2、等腰三角形除具有一般三角形的性质外,还有那些特殊性质?
把问题作为教学的出发点,激发学生的学习兴趣。
问题2给学生留下悬念。
三、 目标导向,自然引入
板书课题
了解本节课的学习内容。
四、 设问质疑,探究尝试
请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起。
[问题]通过观察,你发现了什么结论?
板书学生发现的结论。
[问题]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
[辨疑]由观察发现的命题不一定是真命题,需要证明,怎样证明?
[问题]1、此命题的题设、结论分别是什么?
2、怎样写出已知、求证?
3、怎样证明?
[电脑演示1]
[投影学生证明过程,并由其讲述]
从而引出定理 等腰三角形的两个底角相等(简写成“等边对等角”)
通过电脑演示,引导学生全面观察,联想,突破引辅助线的难关,并向学生渗透转化的数学思想。
引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。
继续观察图形
[问题]1、指出全等三角形中还有哪些
对应边、对应角相等?
设问、质疑
小组讨论,归纳总结,培养学生概括数学材料的能力。
教学内容
教师活动
学生活动
[电脑演示2]
“三线合一”性质 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
[填空]根据等腰三角形性质定理的推论,在△abc中
(1)∵ab=ac,ad⊥bc,
∴∠_=∠_,_=_;
(2)∵ab=ac,ad是中线,
∴∠_=∠_,_⊥_;
(3)∵ab=ac,ad是角平分线,
∴_⊥_,_=_。
通过电脑演示,引出推论1,并引入[填空]、强调推论1的运用方法。
电脑演示给学生对推抡1留下深刻印象,并通过[填空]了解推论1的运用方法。
五、 变式训练,巩固提高
达标练习一
(1)等腰直角三角形的每一个锐角都等于多少度?
(2)若等腰三角形的顶角为40°,
则它的底角为多少度?
(3)若等腰三角形的一个底角为 40°,则它的顶角为多少度?
(3)等边三角形的三个内角有什么关系?各等于多少度?
题目设计遵循由易到难的原则,引导学生拾阶而上。沟通等腰三角形的性质定理和三角形内角和定理的联系,并引出推论2。
a组口答练习
b组讨论后回答。
掌握等腰三角形性质定理的应用,训练学生的类比思维,让学生获得从问题中探索共同的属性和规律的思维能力。
教学内容
教师活动
学生活动
达标练习二
a组:等腰三角形斜边上的高把直角分成两个角,求这两个角的度数。
∠bad、∠cad的度数。
理论联系实际,
充分体现数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
a组口答
b组独立解答.
加深理解定理及推论1,能初步灵活地运用它们进行计算和论证。
布置作业 :1、看书:p1——p3
2、课本p5 想一想
教案设计说明
1、创设丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,唤起与形成新知相关的旧知,从而使学生的原认知结构对新知的学习具有某种“召唤力”。
2、提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就象科学家那样提出问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度。
3、在巩固应用时,训练题组的设计具有阶梯性,加强了变式训练,便于及时反馈。实际应用充分体现了数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
4、利用直观教具及电化教学手段,创设了丰富的课堂教学环境,触发学生求知心向的生成,自觉地努力调集思维和旧知纷纷指向新知,成为学习活动的“催化剂”、“助推器”。
威海市经济技术开发区皇冠中学 丛燕燕
2000年4月
教 案
威海市经济技术开发区皇冠中学
丛燕燕
二o o o年四月
相关专题: 初中数学
专题信息:
几何第二册第三章,3.12第2——4页
教学目标
(1)知识目标:1、掌握等腰三角形的两底角相等,底边上的高、
它们进行有关的论证和计算。
的联系。
(2)能力目标:1、定理的引入培养学生对命题的抽象概括能力,
加强发散思维的训练。
2、定理的证明培养大胆创新、敢于求异、勇于
探索的精神和能力,形成良好的思维品质。
3、定理的应用,培养学生进行独立思考,提高独
立解决问题的能力。
(3)情感目标:在教学过程 中,引导学生进行规律的再发现,激发
学生的审美情感,与现实生活有关的实际问题使
学生认识到数学对于外部世界的完善与和谐,使
他们有效地获取真知,发展理性。
教学难点 用文字语言叙述的几何命题的证明及辅助线的添加。
达标进程
教学内容
教师活动
学生活动
一、 前置诊断,开辟道路
1、什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
首先教师提问了解前置知识掌握情况。
动脑思考、口答。
二、 构设悬念,创设情境
1、一般三角形有哪些性质?
2、等腰三角形除具有一般三角形的性质外,还有那些特殊性质?
把问题作为教学的出发点,激发学生的学习兴趣。
问题2给学生留下悬念。
三、 目标导向,自然引入
板书课题
了解本节课的学习内容。
四、 设问质疑,探究尝试
请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起。
[问题]通过观察,你发现了什么结论?
板书学生发现的结论。
[问题]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
[辨疑]由观察发现的命题不一定是真命题,需要证明,怎样证明?
[问题]1、此命题的题设、结论分别是什么?
2、怎样写出已知、求证?
3、怎样证明?
[电脑演示1]
[投影学生证明过程,并由其讲述]
从而引出定理 等腰三角形的两个底角相等(简写成“等边对等角”)
通过电脑演示,引导学生全面观察,联想,突破引辅助线的难关,并向学生渗透转化的数学思想。
引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。
继续观察图形
[问题]1、指出全等三角形中还有哪些
对应边、对应角相等?
设问、质疑
小组讨论,归纳总结,培养学生概括数学材料的能力。
教学内容
教师活动
学生活动
[电脑演示2]
“三线合一”性质 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
[填空]根据等腰三角形性质定理的推论,在△abc中
(1)∵ab=ac,ad⊥bc,
∴∠_=∠_,_=_;
(2)∵ab=ac,ad是中线,
∴∠_=∠_,_⊥_;
(3)∵ab=ac,ad是角平分线,
∴_⊥_,_=_。
通过电脑演示,引出推论1,并引入[填空]、强调推论1的运用方法。
电脑演示给学生对推抡1留下深刻印象,并通过[填空]了解推论1的运用方法。
五、 变式训练,巩固提高
达标练习一
(1)等腰直角三角形的每一个锐角都等于多少度?
(2)若等腰三角形的顶角为40°,
则它的底角为多少度?
(3)若等腰三角形的一个底角为 40°,则它的顶角为多少度?
(3)等边三角形的三个内角有什么关系?各等于多少度?
题目设计遵循由易到难的原则,引导学生拾阶而上。沟通等腰三角形的性质定理和三角形内角和定理的联系,并引出推论2。
a组口答练习
b组讨论后回答。
掌握等腰三角形性质定理的应用,训练学生的类比思维,让学生获得从问题中探索共同的属性和规律的思维能力。
教学内容
教师活动
学生活动
达标练习二
a组:等腰三角形斜边上的高把直角分成两个角,求这两个角的度数。
∠bad、∠cad的度数。
理论联系实际,
充分体现数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
a组口答
b组独立解答.
加深理解定理及推论1,能初步灵活地运用它们进行计算和论证。
布置作业 :1、看书:p1——p3
2、课本p5 想一想
教案设计说明
1、创设丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,唤起与形成新知相关的旧知,从而使学生的原认知结构对新知的学习具有某种“召唤力”。
2、提供可探索性的问题,合理的设计实验过程,创造出良好的问题情境,不断地引导学生观察、实验、思考、探索,使学生感到自己就象科学家那样提出问题、分析问题、解决问题,去发现规律,证实结论。发挥学生学习的主观能动性,培养学生的探索能力、科学的研究方法、实事求是的态度。
3、在巩固应用时,训练题组的设计具有阶梯性,加强了变式训练,便于及时反馈。实际应用充分体现了数学解决实际问题的作用,培养学生的应用意识,提高数学修养。
4、利用直观教具及电化教学手段,创设了丰富的课堂教学环境,触发学生求知心向的生成,自觉地努力调集思维和旧知纷纷指向新知,成为学习活动的“催化剂”、“助推器”。
威海市经济技术开发区皇冠中学 丛燕燕
2000年4月
教 案
威海市经济技术开发区皇冠中学
丛燕燕
二o o o年四月
相关专题: 初中数学
专题信息:
等腰三角形的性质说课稿全国一等奖篇四
本节课教学设计较为简单,有利于学生掌握新知识。思路清晰,语言流畅,具有亲和力,课堂教学节奏合理,快慢结合,注意顺应学生的思维。知识回顾中用变换图形位置复习旧知识,有助于学生对旧知识的巩固,为本节课作铺垫。学生在教学中思考的时间较多,教师做到了以学生为主,教师为辅,将课堂交还给学生。学生积极性很高,生生互动很多。教学设计中设计了剪折图的活动,引导学生动手探究,体现了新课标中引导学生动手操作探究问题的要求。
建议
1、要明确教学目标,教学设计要美观才有利于学生的学习。
2、给教学设计给听课教师而不是学生的学案。
3、时间的调控上要把握好。
4、要注重点明命题证明的步骤:审题、画图、写已知、写求证、证明。
等腰三角形的性质说课稿全国一等奖篇五
1.我们知道,数学学习是连贯的,每节课都起到承上启下的作用。林文娟老师首先复习回顾了等腰三角形的性质,然后通过合作学习让学生动笔作图,思考线段ab与ac相等吗?从而引出课题。这种以旧引新的方式符合学生认知特点,也符合数学新课程标准提出的“动手操作-----建立模型----解释与应用模型”的课堂模式。
2.在课堂教学中,提炼方法,结论成为课堂的一个亮点,往往这些是学生缺的东西,而当我们学习新知识后,教师要引导学生善于将新知识纳入到旧的体系中,形成新的知识体系。培养学生善于总结反思的习惯。达到知识,方法迁移,触类旁通的效果。这节课对判定定理的大前提“在同一个三角形中”分析的很到位,成为本节可的亮点。
3.数学课堂是培养学生思维的主阵地,思维是数学的灵魂,是形成数学能力、意识的桥梁.但是,数学思维具有高度抽象性,学生往往不易理解.特别是初中学生,从具体思维向抽象思维过度的时期,往往会受到阻碍。教学中教师如何通过启发诱导开启学生受阻的思维很见功底。
本课教学中,林老师在证明判定定理时,有启发学生通过添加辅助线构造等腰三角形“三线合一”,层层诱导,通过问题串的形式启发:1.添加怎样的辅助线?2过a作一条辅助线,有没有什么要求?(预设:四种添法,有高线,角平分线,中线,随意一条线)3.辅助线如何书写,4.如何应用。
1.新课的引入问题。本课的引入如果能用几何画板展示,效果应该会更好。
2.定理得出后,应该给出几何语言。教师准确而规范的例题示范是本节课甚至整个基础教育数学教学最最关键的环节。
(1)多媒体的使用问题:数学课不能整课使用多媒体,而只是某些重点难点的突破和例题的题目可以使用,其他环节应该取消。也就是把多媒体用成数学中的“微课”,如果声光电一起上,推导、演绎、结论啪啪啪的响,学生下课以后什么都没有,甚至连书写的规范都没有。思维训练等于0,长久后,学生得不到数学学习的乐趣,这也是导致高年级或者高中数学差生很多很多的主要原因。
(2)数学教师要学好几何画板。几何画板在课堂中就是微课使用10分钟以内,随时可以形成动画,能写成文本,能形成思维流。
(3)什么是数学好课?我觉得掌声、笑声、辩论声都在一节课出现就是好课,成功的课。只有掌声的课肤浅且做作,只有笑声的课庸俗,只有辩论声的课没有生命的意义。
等腰三角形的性质说课稿全国一等奖篇六
教学设计合理:两位老师的学案设计都目标明确,融会贯通,内容恰当,思路清晰,导入简单,设计条理清晰,层次分明,注重学生动手操作。既使学生理解并掌握了等腰三角形的性质,同时又培养了学生动手操作勇于探索的能力。
成功实施教学:两位老师都能根据学生的特点教学,照顾中下生,面向全体,使学生的思维充分展开,教师对知识的运用和引申也非常熟练。特别是实验中学那老师调动了学生认真思考及回答问题的积极性,效果甚好。
课堂结构紧凑:两位老师的张驰有度,有条不紊,反馈调控恰当。
指导学生学习:学生参与,师生互动效果好。特别是实验中学那老师辅导个别生,调动生生互动非常有效,表现积极主动,学生参与面广。
追求美的感受:课堂教学中,两位老师始终面带微笑,语速不急不缓,使学生如沐春风,在轻松愉快的氛围中完成了整堂课教学。
本教学方法设计为“合作探究型”,我觉得还应处理好以下几点:
⑴等腰三角形“三线合一”定理的梯度,缓冲度的设置。因为它需要两个条件,推出两个结论,学生第一次碰到,比较困难。我觉得应从“特殊→一般”去处理可能更好,如给出顶角的度数和底边的长来推算,再引导到推理。而仙村中学的江老师关于“三线合一”的计算题一道也没有。
⑵加强证题前的分析,引导学生从已知条件出发,探究解题思路,此时可能有多种途径选择,最好结合所要求证的结论一起考虑,按需择取。
⑶加强学生的书写能力的培养。本节课学生书写板演基本没有,比较欠缺,可能学生能说不会写,或者写不好。
⑷课件有些简单,背景色调模糊,可以做些改进。学案不够美观,新鲜感稍差。可在习题设计上做些改动,变换方式和数据,效果会更好的。
等腰三角形的性质说课稿全国一等奖篇七
重点与难点分析:
本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。
本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知、求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。
教法建议:
(1)发现问题
(2)解决问题
(3)加深理解
1.掌握定理的证明及这个定理的两个推论;
2.会运用证明线段相等;
3.使学生掌握一般文字题的证明;
4.通过文字题的证明,提高学生几何三种语言的互译能力;
5.逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;
直尺,微机
:问题探究法
1、 性质定理的发现与证明
(1)投影显示:
(2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?
2、推论1的发现与证明
投影显示:
由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边.
学生口述证明过程.
教师指出:等腰三角形的顶角的平分线,底边上的中线、底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。
3、推论2的发现与证明
投影显示:
4、定理及其推论的应用
解:(1) (2)另外两内角分别为: (3)
小结:渗透分类思想,培养思维的严密性.
求证:bd=ce
证明:作af⊥bc,,垂足为f,则af⊥de
∵ab=ac,ad=ae(已知)
af⊥bc,af⊥de(辅助线作法)
∴bf=cf,df=ef(等腰三角形底边上的高与底边上的中线互相重合)
∴bd=ce
求证: p=
证明:连结oc
在△bpd和△bcd中
在△adc和△bcd中
因此, p=
例4 求证:等腰三角形两腰上中线的交点到底边两端点的距离相等
求证:bf=cf
证明:∵bd、ce是△abc的两条中线,ab=ac
∴ad=ae,be=cd
在△abd和△ace中
∴△abd≌△ace
∴ 1= 2
在△bef和△ced中
∴△bef≌△ced
∴bf=fc
5、反馈练习:
出示图形及题目:
将实际问题化,培养学生应用能力。
6、课堂小结:
教师引导学生小结
(1)、
(2)、等边三角形的性质
(3)、文字证明题的书写步骤
7、布置作业 :
a、 书面作业 p96#1、2
b、 上交作业 p96#4、7、8
c、 思考题:
求证:ef⊥bc
证明 : 作bc边上的高am,m为垂足
∵am⊥bc
∴∠bam=∠cam
又∵∠bac为△aef的外角
∴∠bac =∠e+∠efa
即∠bam+∠cam=∠e=∠efa
∵∠aef=∠afe
∴∠cam=∠e
∴ef∥am
∵am⊥bc
∴ef⊥bc
等腰三角形的性质说课稿全国一等奖篇八
本节课教学目标明确,整节课紧紧围绕着目标来进行,语言清晰,学生参与强,每个学生都能积极思考,积极参与,有利于增强学生对语言的运用能力;教师在教学中充分发挥了主导作用,利用多种证明方法证明命题,有利于培养学生一题多解的做题能力,教案中设计了形成性变式训练,有利于学生对新知的巩固。
建议
1、适当增加生生互动。
2、练习设计适当分层,练习小试牛刀中适当减少同一类型的题量,增加一道直接利用等腰三角形性质的综合性证明题。
3、语速要适当减慢,每个环节中要有适当的时间给学生独立思考,消化题日。
4、要注重点明命题证明的步骤:审题、画图、写已知、写求证、证明。