作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是小编带来的优秀教案范文,希望大家能够喜欢!
人教版数学教案篇一
教学目标
解三角形及应用举例
教学重难点
解三角形及应用举例
教学过程
一. 基础知识精讲
掌握三角形有关的定理
利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
利用余弦定理,可以解决以下两类问题:
(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
二.问题讨论
例6:在某海滨城市附近海面有一台风,据检测,当前台
风中心位于城市o(如图)的东偏南方向
300 km的海面p处,并以20 km / h的速度向西偏北的
方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,
并以10 km / h的速度不断增加,问几小时后该城市开始受到
台风的侵袭。
一. 小结:
1.利用正弦定理,可以解决以下两类问题:
(1)已知两角和任一边,求其他两边和一角;
(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3.边角互化是解三角形问题常用的手段.
三.作业:p80闯关训练
人教版数学教案篇二
共1课时
1教学目标
一、知识与技能:1、理解并掌握直线与平面平行的性质定理;
2、引导学生探究线面平行的问题可以转化为线线平行的问题,从而能够通过化归解决有关问题,进一步体会数学转化的思想。
二、过程与方法:通过直观观察、猜想研究线面平行的性质定理,培养学生的自主学习能力,发展学生的合情推理能力及逻辑论证能力。
三、情感、态度与价值观:培养学生主动探究知识、合作交流的意识,在体验数学转化过程中激发学生的学习兴趣,从而培养学生勤于动脑和动手的良好品质。
2重点难点
教学重点:线与面平行的性质定理及其应用。
教学难点:线与面的性质定理的应用。
3教学过程 3.1 第一学时 教学活动 活动1【导入】问题引入
一、问题引入
木工小刘在处理如图所示的一块木料,已知木料的棱bc∥平面a′c′.现在小刘要经过平面a′c′内一点p和棱bc将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?
预设:(1)过p作一条直线平行于b′c′;
(2)过p作一条直线平行与bc。
(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)
活动2【讲授】新课讲授
二、知识回顾
判定一条直线与一个平面平行的方法:
1、定义法:直线与平面没有公共点。
2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)
三、知识探究(一)
思考一:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?
答:平行或异面。
思考2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?
答:无数条;平行。
思考3:如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?
答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。
思考4:综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?
答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)
四、知识探究(二)
定理:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
定理可简述为:线面平行,则线线平行。
直线与平面平行的性质定理的符号表示:
(由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)
活动3【练习】课堂练习
五、应用示例
练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。
(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )
(2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )
(3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )
例3 如图所示的一块木料中,棱bc平行于面a′c′.
(1)要经过面a′c′ 内一点p和棱bc将木料锯开,应怎样画线?
(2)所画的线与平面ac是什么位置关系?
分析:经过木料表明a′c′内的一点p和棱bc将木料锯开,实际上是经过bc及bc外一点p做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。
练习2:如图,在空间四边形abcd中,e,f,g,h分别是ab,bc,cd,da上的点,eh∥fg,求证:fg∥bd.
活动4【讲授】课堂小结
六、课堂小结
1、直线与平面平行的判定定理
(1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
(2)线线平行→线面平行
2、直线与平面平行的性质定理
(1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
(2)线面平行→线线平行
(课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)
活动5【作业】课后作业
p61练习,习题2.2a组:1,2. (做在书上)
p62习题2.2a组:5,6.
2.2直线、平面平行的判定及其性质
课时设计 课堂实录
2.2直线、平面平行的判定及其性质
1第一学时 教学活动 活动1【导入】问题引入
一、问题引入
木工小刘在处理如图所示的一块木料,已知木料的棱bc∥平面a′c′.现在小刘要经过平面a′c′内一点p和棱bc将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?
预设:(1)过p作一条直线平行于b′c′;
(2)过p作一条直线平行与bc。
(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。)
活动2【讲授】新课讲授
二、知识回顾
判定一条直线与一个平面平行的方法:
1、定义法:直线与平面没有公共点。
2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)
三、知识探究(一)
思考一:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?
答:平行或异面。
思考2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?
答:无数条;平行。
思考3:如果直线a与平面α平行,经过直线a的平面β与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?
答:平行;因为a∥α,所以a与α没有公共点,则a与b没有公共点,又a与b在同一平面β内,所以a与b平行。
思考4:综上分析,在直线a与平面α平行的条件下我们可以得到什么结论?
答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。)
四、知识探究(二)
定理:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
定理可简述为:线面平行,则线线平行。
直线与平面平行的性质定理的符号表示:
(由图形语言到文字语言,再到符号语言,一步一步深化学生对该定理的理解)
活动3【练习】课堂练习
五、应用示例
练习1:判断下列命题是否正确,正确的画“√”,错误的画“×”。
(1)如果a,b是两条直线,且a∥b,那么a平行于经过b的任何平面。 ( × )
(2)如果直线a和平面α满足a∥α,那么a与α内的任何直线平行。 ( × )
(3)如果直线a,b和平面α满足a ∥α,b ∥α,那么a ∥b。 ( × )
例3 如图所示的一块木料中,棱bc平行于面a′c′.
(1)要经过面a′c′ 内一点p和棱bc将木料锯开,应怎样画线?
(2)所画的线与平面ac是什么位置关系?
分析:经过木料表明a′c′内的一点p和棱bc将木料锯开,实际上是经过bc及bc外一点p做截面,也就是找出平面与平面的交线。我们可以由直线与平面平行的性质定理和公理2、公理4作出。
练习2:如图,在空间四边形abcd中,e,f,g,h分别是ab,bc,cd,da上的点,eh∥fg,求证:fg∥bd.
活动4【讲授】课堂小结
六、课堂小结
1、直线与平面平行的判定定理
(1)定理 平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
(2)线线平行→线面平行
2、直线与平面平行的性质定理
(1)定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
(2)线面平行→线线平行
(课堂总结从文字语言、图形语言、符号语言三方面强调总结两个定理。)
活动5【作业】课后作业
p61练习,习题2.2a组:1,2. (做在书上)
p62习题2.2a组:5,6.
人教版数学教案篇三
教学过程:
一、复习准备:1. 试用秦九韶算法求多项式52()42f_x
2. 教学进位制之间的互化:①例1:把二进制数(2)1001101化为十进制数. (学生板书教师点评师生共同总结将非十进制转为十进制数的方法)分析此过程的算法过程,编写过程的程序语言. 见p34 ②练习:将(5)2341、(3)121转化成十进制数. ③例2、把89化为二进制数. 分析:根据进位制的定义,二进制就是“满二进一”,可以用2连续去除89或所得商,然后取余数. (教师板书)
三、巩固练习:1、练习:教材p35第3题
四、作业:教材p38第3题