作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?这里我给大家分享一些最新的教案范文,方便大家学习。
小学数学平均数教案四年级数学平均数教案篇一
1、使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意 义。
2、初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密 联系。
3、在愉悦轻松的课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学规 律的兴趣,积累积极的数学学习体验。
一、情境导入 ,引入新课
二、自主探究 ,解决问题
1、初步理解平均数的意义和求平均数的方法。(课件出示教材第 90页例 1情境图)师:这是环保小分队的同学们收集饮料瓶的统计情况和他们提出的问题,借助刚才的视频和 统计图你获得了哪些数学信息?我们要解决的问题是什么?(指名说信息和问题)师:那么你能解决“平均每人收集了多少个饮料瓶?”这个问题吗?每人都有这个图,请同 学们独立思考解决这个问题,然后小组交流你的想法。(预设:两种方法。)师:这个小组平均每人收集了多少个饮料瓶?(13个)师:大家都同意这个算法吗? 13是怎么来的?(1)“移多补少”的方法。指名学生说自己用的方法,结合学生的口述和学生动手操作,用课件演示“移多补少”的过程。
师:这种方法对吗?为什么要把小红的一个给小兰,把小明的两个给小亮?(为了使他们每 个人的瓶子数量同样多)能给这种方法起个名字吗?(指名学生试着回答总结)师:像这样把多的饮料瓶移出来补给少的,使得每个人的饮料瓶的数量同样多,这种方法叫 “移多补少” ,(板书移多补法)这里平均每人收集了 13个,这个“ 13”是他们真实收集到的 饮料瓶吗?(不是)而是 4个人的总体水平。师:还有不一样的方法吗? 学生口述算理并说算式,老师板书。
师:像这样先合并然后再平均分的方法同叫“先合后分法。”
无论是通过移多补少还是先合后分, 其目的只有一个, 就是使原来几个不同的数变得同样多, 这样得到的数就是这组数据的平均数。13就是这 4个数的平均数,这也是我们今天要学习的 内容。(板书课题:平均数)它引导学生利用“移多补少”或“平均分的意义”理解,平均数并不是每个学生收集到瓶子 的实际数量,而是“相当于”把 4个学生收集到的瓶子总数平均分成 4份得到数,可能同学 们收集到的比这个数量小,也可能比这个数量大。平均数是为了代表这组数据的总体水平而 创造出来的一个“虚拟”的数。
2、内化拓展、进一步理解平均数的意义和计算方法。
师:现在让我们一起来看看体育小组的活动(课件出示照片和 91页例 2情景图------踢毽比赛)对于比赛,你们最想知道什么?(哪个队赢)那就是想知道哪个队的成绩好?现在老师让你 们当裁判,一定要公平公正地裁决。(1)出示表一:(男女生各一名同学)师:如果你是裁判,你认为哪个队赢?你是怎么知道的?(1917)(2)出示表二:(男女生各加入三名同学)师:现在哪个队赢了?你怎么知道?(指名学生说是通过计算总成绩知道的)现在男生算你 们队的成绩,女生算你们队的成绩。通过计算得出:6876(女生队获胜)引导学生体会,在人数相同的情况下,可以用求总数的方法比较输赢。也可以求平均数的方 法。
(18+20+19+19)÷4 =85÷5
=76÷4 =17(个)
=19(个)1719 答:女生队的成绩好些。
三、探究结果 ,回顾小结
1、体会平均数的意义。
四、联系实际,拓展应用
1、做一做(课件出示)学生独立思考解决,并指名学生板演并说方法。
2、判一判(课件出示)指名学生读题,独立思考后判断并说理由。
3、说一说(课件出示)学生小组交流并汇报。
五、实践作业、课后延伸
小学数学平均数教案四年级数学平均数教案篇二
师:你们喜欢体育运动吗?
生:(齐)喜欢!
生:不相信。篮球运动员通常都很强壮,就像姚明和乔丹那样。张老师,您也太瘦了点。
生:(齐)想!
生:我不同意。万一他后面两次投中的多了,那我不就危险啦!
生:我会同意的。做老师的应该大度一点。
师:呵呵,还真和我想到一块儿去了。不过,小强后两次的投篮成绩很有趣。
(师出示小强的后两次投篮成绩:5个,5个。生会心地笑了)
生:5。
师:为什么?
生:他每次都投中5个,用5来表示他1分钟投中的个数最合适了。
师:说得有理!接着该小林出场了。小林1分钟又会投中几个呢?我们也一起来看看吧。
(师出示小林第一次投中的个数:3个)
师:如果你是小林,会就这样结束吗?
生:不会!我也会要求再投两次的。
师:为什么?
生:这也太少了,肯定是发挥失常。
生:(齐)不同。
生:我觉得可以用5来表示,因为他最多,二次投中了5个。
师:也就是说,如果也用5来表示,对小强来说
生:(齐)不公平!
师:该用哪个数来表示呢?
生:可以用4来表示,因为3、4、5三个数,4正好在中间,最能代表他的成绩。
师:不过,小林一定会想,我毕竟还有一次投中5个,比4个多1呀。
生:(齐)那他还有一次投中3个,比4个少1呀。
师:哦,一次比4多1,一次比4少1
生:那么,把5里面多的1个送给3,这样不就都是4个了吗?
(师结合学生的交流,呈现移多补少的过程,如图1)
生:(齐)4个。
师:能代表小林1分钟投篮的一般水平吗?
生:(齐)能!
师:轮到小刚出场了。(出示图2)小刚也投了三次,成绩同样各不相同。这一回,又该用几来代表他1分钟投篮的一般水平呢?同学们先独立思考,然后在小组里交流自己的想法。
生:我觉得可以用4来代表他1分钟的投篮水平。他第二次投中7个,可以移1个给第一次,再移2个给第三次,这样每一次看起来好像都投中了4个。所以用4来代表比较合适。
(结合学生交流,师再次呈现移多补少过程,如图3)
师:还有别的方法吗?
生:我们先把小刚三次投中的个数相加,得到12个,再用12除以3等于4个。所以,我们也觉得用4来表示小刚1分钟投篮的水平比较合适。
[师板书:3+7+2=12(个),123=4(个)]
生:能!都是4个。
师:能不能代表小刚1分钟投篮的一般水平?
生:能!
生:使原来几个不相同的数变得同样多。
师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(出示图1),我们就说4是3、4、5这三个数的平均数。那么,在这里(出示图3),哪个数是哪几个数的平均数呢?在小组里说说你的想法。
生:在这里,4是3、7、2这三个数的平均数。
师:不过,这里的平均数4能代表小刚第一次投中的个数吗?
生:不能!
师:能代表小刚第二次、第三次投中的个数吗?
生:也不能!
生:这里的4代表的是小刚三次投篮的平均水平。
生:是小刚1分钟投篮的一般水平。
(师板书:一般水平)
(师呈现前三次投篮成绩:4个、6个、5个,如图4)
师:猜猜看,三位同学看到我前三次的投篮成绩,可能会怎么想?
生:他们可能会想:完了完了,肯定输了。
师:从哪儿看出来的?
生:你们看,光前三次,张老师平均1分钟就投中了5个,和小强并列第一。更何况,张老师还有一次没投呢。
生:我觉得不一定。万一张老师最后一次发挥失常,一个都没投中,或只投中一两个,张老师也可能会输。
师:情况究竟会怎么样呢?还是让我们赶紧看看第四次投篮的.成绩吧。
(师出示图5)
师:凭直觉,张老师最终是赢了还是输了?
生:输了。因为你最后一次只投中1个,也太少了。
生:大约是4个。
生:我也觉得是4个。
生:不可能,因为只有一次投中6个,又不是次次都投中6个。
生:前三次的平均成绩只有5个,而最后一次只投中1个,平均成绩只会比5个少,不可能是6个。
生:再说,6个是最多的一次,它还要移一些补给少的。所以不可能是6个。
师:那你们为什么不估计平均成绩是1个呢?最后一次只投中1个呀!
生:也不可能。这次尽管只投中1个,但其他几次都比1个多,移一些补给它后,就不止1个了。
生:小一些。
生:还要比最小的数大一些。
生:应该在最大数和最小数之间。
师:是不是这样呢?赶紧想办法算算看吧。
师:和刚才估计的结果比较一下,怎么样?
生:的确在最大数和最小数之间。
师:现在看来,这场投篮比赛是我输了。你们觉得问题主要出在哪儿?
生:最后一次投得太少了。
生:如果最后一次多投几个,或许你就会赢了。
师:试想一下:如果张老师最后一次投中5个,甚至更多一些,比如9个,比赛结果又会如何呢?同学们可以通过观察来估一估,也可以动笔算一算,然后在小组里交流你的想法。
(生估计或计算,随后交流结果)
生:如果最后一次投中5个,那么只要把第二次多投的1个移给第一次,很容易看出,张老师1分钟平均能投中5个。
师:你是通过移多补少得出结论的。还有不同的方法吗?
生:我是列式计算的。4+6+5+5=20(个),204=5(个)。
生:我还有补充!其实不用算也能知道是5个。大家想呀,原来第四次只投中1个,现在投中了5个,多出4个。平均分到每一次上,每一次正好能分到1个,结果自然就是5个了。
生:应该增加2。因为9比1多8,多出的8个再平均分到四次上,每一次只增加了2个。所以平均数应增加2个。
生:我是列式计算的,4+6+5+9=24(个),244=6(个)。结果也是6个。
师:现在,请大家观察下面的三幅图,你有什么发现?把你的想法在小组里说一说。
(师出示图6、图7、图8,三图并排呈现)
(生独立思考后,先组内交流想法,再全班交流)
生:我发现,每一幅图中,前三次成绩不变,而最后一次成绩各不相同。
师:最后的平均数
生:也不同。
师:看来,要使平均数发生变化,只需要改变其中的几个数?
生:一个数。
生:也跟着发生了变化。
师:能解释一下为什么吗?
生:很简单。多的要移一些补给少的,最后的平均数当然要比最大的小,比最小的大了。
师:其实,这是平均数的又一个重要特点。利用这一特点,我们还可以大概地估计出一组数据的平均数。
生:我还发现,总数每增加4,平均数并不增加4,而是只增加1。
生:不会,应该增加4。
生:想!
生:超过的部分和不到的部分一样多,都是3个。
生:(观察片刻)也是这样的。
师:这儿还有几幅图,(出示图1和图3)情况怎么样呢?
生:超过的部分和不到的部分还是同样多。
生:如果不一样多,超过的部分移下来后,就不可能把不到的部分正好填满。这样就得不到平均数了。
生:就像山峰和山谷一样。把山峰切下来,填到山谷里,正好可以填平。如果山峰比山谷大,或者山峰比山谷小,都不可能正好填平。
师:多生动的比方呀!其实,像这样超出平均数的部分和不到平均数的部分一样多,这是平均的第三个重要特点。把握了这一特点,我们可以巧妙地解决相关的实际问题。
(师出示如下三张纸条,如图9)
生:我觉得不对。因为第二张纸条比10厘米只长了2厘米,而另两张纸条比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。
师:照你看来,它们的平均长度会比10厘米长还是短?
生:应该短一些。
生:大约是9厘米。
生:我觉得是8厘米。
生:不可能是8厘米。因为7比8小了1,而12比8大了4。
师:它们的平均长度到底是多少,还是赶紧口算一下吧。
生:有可能。
师:不对呀!不是说队员的平均身高是160厘米吗?
生:平均身高160厘米,并不表示每个人的身高都是160厘米。万一李强是队里最矮的一个,当然有可能是155厘米了。
生:平均身高160厘米,表示的是篮球队员身高的一般水平,并不代表队里每个人的身高。李强有可能比平均身高矮,比如155厘米,当然也可能比平均身高高,比如170 厘米。
师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影,图略)画面中的人,相信大家一定不陌生。
生:姚明!
生:不可能。
生:姚明的身高就不止2米。
生:姚明的身高是226厘米。
生:那就一定有人身高不到平均数。
师:没错。据老师所查资料显示,这位队员的身高只有178厘米,远远低于平均身高。看来,平均数只反映一组数据的一般水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看池塘的平均水深。
(师出示图11)
师:冬冬来到一个池塘边。低头一看,发现了什么?
生:平均水深110厘米。
生:不对!
师:怎么不对?冬冬的身高不是已经超过平均水深了吗?
生:平均水深110厘米,并不是说池塘里每一处水深都是110厘米。可能有的地方比较浅,只有几十厘米,而有的地方比较深,比如150厘米。所以,冬冬下水游泳可能 会有危险。
师:说得真好!想看看这个池塘水底下的真实情形吗?
(师出示池塘水底的剖面图,如图12)
生:原来是这样,真的有危险!
师:看来,认识了平均数,对于我们解决生活中的问题还真有不少帮助呢。当然,如果不了解平均数,闹起笑话来,那也很麻烦。这不,前两天,老师从最新的《健康报》上查到这么一份资料。
(师出示:《2007年世界卫生报告》显示,目前中国男性的平均寿命大约是71岁)
生:中国男性的平均寿命比原来长了。
生:我想,老伯伯可能以为平均寿命是71岁,而自己已经70岁了,看来只能再活1年了。
师:老伯伯之所以这么想,你们觉得他懂不懂平均数。
生:不懂!
生:老伯伯,我觉得平均寿命71岁反映的只是中国男性寿命的一般水平,这些人中,一定会有人超过平均寿命的。弄不好,你还会长命百岁呢!
师:谢谢你的祝福!不过,光这么说,好像还不足以让我彻底放心。有没有谁家的爷爷或是老太爷,已经超过71岁的?如果有,那我可就更放心了。
生:我爷爷已经78岁了。
生:我爷爷已经85岁了。
生:我老太爷都已经94岁了。
师:真有超过71岁的呀!猜猜看,这一回老伯伯还会再难过吗?
生:不会了。
生:我觉得中国女性的平均寿命大约有65岁。
生:我觉得大约有73岁。
(师呈现相关资料:中国女性的平均寿命大约是74岁)
师:发现了什么?
生:女性的平均寿命要比男性长。
生:不一定!
生:虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。
师:说得真好!走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。下课!
1.《平均数》的教学设计
2.人教版小学数学教案
4.数学教案三年级上册
5.【实用】小学数学教案四篇
6.三年级下册数学教案
小学数学平均数教案四年级数学平均数教案篇三
7.一列火车从甲城到乙城,经每小时80千米的速度行驶了6小时,以每小时90千米的速度行驶了7小时,以每小时110千米的速度行驶了3小时,求这列火车的平均速度。
小学数学平均数教案四年级数学平均数教案篇四
教学内容:教材第12l页求平均数和练一练,练习二十三第8~14题。
一、揭示课题
我们在进行统计或分析统计结果时,经常要用到平均数。(板书课题)这节课,重点复习求平均数。
二、复习求平均数 1.平均数的含义。
(1)提问:谁能举例说说什么是几个数量的平均数吗?(2)下面说法对不对? ①前3天平均每天织布200米,就是实际每天各织200米。②身高1.5米的人在平均水深1.2米的池塘里没有危险。2.提问:那么,求几个数量的平均数需要哪些条件?平均数要怎样求?(板书:总数量总份数=平均数)3.做练练第1题。
让学生读题。指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一部分求的是什么。4.做练一练第2题。
学生默读题目。指名学生说一说题意。让学生在练习本上列
第 1 页 出算式。提问学生怎样列式的,老师板书。让学生说明每一步求的是什么。提问:这两题在解题方法上有什么相同的地方?为什么列式不一样?说明:按照求平均数的数量关系解题时,要注意找准总数量与总份数之间的对应关系,再根据数量关系式正确列式解答。(板书:注意:找准总数量与总份数的对应关系)
三、综合练习
1.做练习二十三第11题。
指名一人板演,其余学生做在练习本上。集体订正,让学生说说是按怎样的数量关系列算式的,(总路程除以时间等于平均速度)每一步求的什么数量。追问:为什么总路程是1402?为什么时间是4.5加5.5的和?指出:解答时要认真看题,弄清题意,理解条件和问题的意思。2.做练习二十三第12题。
让学生默读题目。提问:三人的平均成绩是110分是什么意思?怎样才能求出另一位同学的成绩是多少分?指名学生口答算式,老师板书。追问:1103表示什么?为什么三人的总分数要用110乘3? 3.做练习二十三第13题。
第 2 页 用哪个量做被除数,哪个量做除数。4.做练习二十三第14题。
让学生观察统计图。提问:你从图里了解了哪些情况?想到了哪些问题?请大家在小组里估计一下,平均每月水费、电费大约各要多少元,并且说说怎样想的。指名学生交流估计的结果和想法。再让学生求出平均数。
四、课堂小结
通过这节课的复习,你进一步明确了哪些问题?
五、课堂作业
练习二十三第8~10题。
第 3 页