人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
华罗庚的读书笔记篇一
华罗庚的人生并不平坦。他父亲40岁才生下他。他从小贪玩、好动,两条腿比头脑更灵活。但是他的成绩却不好。所以常常挨给妈妈骂。
初中二年级,他开始用功了。特别在数学课上现出数学的才能。级任老师是他的数学天才的第一发现者。
二十年代中期军阀混战,他在上海中华职业学校才学了一年半因为这个混战没办法听断功课,代替父亲背起生活的纤绳。但是他还是从曼学习的渴望。一个偶然的机会,他从初中时的那位老师手里借来几本数学书箱。父亲看见儿子这些书反而给他大发脾气。
他18岁的时候有了两个喜事。一个是他初中时的那位老师当上校长了。那位校长的帮助他可以就业了。还有另一个喜事他结了婚。
他做工作虽然很小的单位但做得很认真。校长看见他这样勤奋,聘请他担任补习班的校员。岂料好景不长,有人认为不满校长的行动。就打击了校长。这可怜的校长后来长忿然辞职。
打击接着打击这年全县流行瘟疫。他躺了六个月才起来。他的命运很崎岖。它变成一个残疾。他的下身一辈子恢复起来了。
他是一个坚强的人。久病之后,他克服行动的不便,继续去学校工作。肉体上的残疾会给人造成心理上的受伤,但是也能激起一个人不甘沉沦的热忱。
他只想获得一门学问。他每天傍晚小店关门上板以后坐在昏黄如豆的油灯下一直研究数学。他看过的书越来越多,消化机能一天比一天亢进。
1930年,上海《科学》杂志上刊登了他的一篇文章。北京清华大学数学系主任熊请看了他的文章叫他来清华大学。清华并没热烈拥抱华罗庚。他要求熊庆把高等数学分析。天天只睡了五六个小时只用一年半的时间久攻下数学专业全部课程。他一次寄出去三篇论文,都在国外的刊物上发表了。这对清华大学记录了荣光的时刻。
从这看来,华罗庚是很坚强的人也是愚直的人。虽然有精神上的打击,社会上的打击,但是有这样性格会克服了所有的打击。人们都一样,如果碰到打击有人会逃避,有人会藏躲。我也是同样的人。有了困难现象逃走的办法,没有想过克服的办法。因为知道这克服的时间斌不容易,也有可能要很长时间。
很多人都怕这样的过程,就不容易面对打击。不过华罗庚在所有的打击面前振振有词地解决了。
在生活当中见面了各种各样的人。但我从来没看到像华罗庚一样拘泥的人。对一个方面不断的热忱和坚持连贫穷也挡不住他的拘泥的性格。这样性格会留下在历史上一篇的故事。
我可能永远赶不上华罗庚。但是我通过华罗庚学了一个很重要的部分。我是一个胆小鬼。发生了麻烦的是急于逃亡也可能找借口。看这篇华罗庚的日记可以学习了固执的热忱。灾顶之灾的情况也毅然接受的华罗庚!这样的态度就是我要学习的部分。我只看前面不看后面,不知道我多么幸福。总是觉得不满自己的情况,总是追一个梦想。
但是我从今天可以改变不管别人说什么只有自己坚固的心才会提高自己,有了热忱会找正道。
华罗庚的读书笔记篇二
《华罗庚科普著作选》是一部适合中学生阅读的数学课外读物,它集合了华罗庚几十年的数学研究成果的精华。虽然我在读这本书时,有一些难以理解的知识,或者说是我所学过的知识所不能及的篇章,我都做上了标记,以便今后学习了相关的基础知识后,能够重新理解那深奥的理论。
《从杨辉三角形谈起》中最核心的理论便是杨辉三角形基本性质,从中衍生出的二项式定理是非常重要的。而它的两个特例也让我大为惊叹(2ª和0的变形)。之后的级数也是围绕这个定理展开的。 《从祖冲之的圆周率谈起》给我留下深刻印象。华罗庚从祖冲之圆周率的约率7/22和密率355/113开始,介绍了辗转相除法和连分数,由此解释了约率和密率的由来。奥数老师曾讲过用辗转相除法求出两数的最大公约数,而华教授能进一步用连分数相加求出原两数之比的既约分数。从这小小的一点就能反映出华教授的刻苦钻研精神。之后谈到的有关天文和历法的科普知识,又让我大开眼界。
《从孙子的“神机妙算”谈起》中,我掌握了一种用辗转相除法解决一类同余问题,以及用这种方法来解二元一次方程。多项式的辗转相除法可帮助我们解决多项式的类似问题。
《数学归纳法》中,我没有过多的心得体会,因为胥老师已经介绍得比较全面了,但我也多学习到了一些解题。
《谈谈与蜂房结构有关的数学问题》中最让我长见识的是蜂房底部居然是由三个菱形构成的,其中一致的规律:钝角等于109°28′,锐角等于70°32′。蜜蜂计算这一角度比科学家还要准确,真是令人佩服。蜂房结构使得它利用的材料最少,体积最大,更是令人折服。 《天才与锻炼》使我懂得了天才不是天生的,而是后天锻炼出来的结果。
在书的第二部分华教授为我们展现了中国数学史辉煌的一页,还与我们探讨了学习科学的方法,比如:学科学需要热诚,更需要持久的热诚;学科学要有雄心,但不能越级而进,更不能钻牛角尖;学科学要能创造,但也要善于接受已有的成果;自修是能达到学习的目的,毅力和耐心是成功的保证等等。
在书的第三部分华教授讲述了数学应用方面的知识,其中令我记忆犹新的是“统筹法”和“优选法”。学会了“统筹法”就能使一件事乃至一项工程,以最高效率完成。学会了“优选法”就能在最少的时间里选出最佳的方案。
读完了这本书使我在数学殿堂里又见到了许多新奇的东西,让我大开眼界,让我受益匪浅。虽然这本书我没有完全读透,但在以后我掌握了更多的基础知识后,我一定会将未读懂的部分再次研读。
华罗庚的读书笔记篇三
“天才”不是一下子做出来的。华罗庚他既是一位天才,也有了不断的努力才成为伟大的数学家。
华罗庚的人生并不平坦。他父亲40岁才生下他。他从小贪玩、好动,两条腿比头脑更灵活。但是他的成绩却不好。所以常常挨给妈妈骂。
初中二年级,他开始用功了。特别在数学课上现出数学的才能。级任老师是他的数学天才的第一发现者。
二十年代中期军阀混战,他在上海中华职业学校才学了一年半因为这个混战没办法听断功课,代替父亲背起生活的纤绳。但是他还是从曼学习的渴望。一个偶然的机会,他从初中时的那位老师手里借来几本数学书箱。父亲看见儿子这些书反而给他大发脾气。
他18岁的时候有了两个喜事。一个是他初中时的那位老师当上校长了。那位校长的帮助他可以就业了。还有另一个喜事他结了婚。
他做工作虽然很小的单位但做得很认真。校长看见他这样勤奋,聘请他担任补习班的校员。岂料好景不长,有人认为不满校长的行动。就打击了校长。这可怜的校长后来长忿然辞职。
打击接着打击这年全县流行瘟疫。他躺了六个月才起来。他的命运很崎岖。它变成一个残疾。他的下身一辈子恢复起来了。
他是一个坚强的人。久病之后,他克服行动的不便,继续去学校工作。肉体上的残疾会给人造成心理上的受伤,但是也能激起一个人不甘沉沦的热忱。
他只想获得一门学问。他每天傍晚小店关门上板以后坐在昏黄如豆的油灯下一直研究数学。他看过的书越来越多,消化机能一天比一天亢进。
1930年,上海《科学》杂志上刊登了他的一篇文章。北京清华大学数学系主任熊请看了他的文章叫他来清华大学。清华并没热烈拥抱华罗庚。他要求熊庆把高等数学分析。天天只睡了五六个小时只用一年半的时间久攻下数学专业全部课程。他一次寄出去三篇论文,都在国外的刊物上发表了。这对清华大学记录了荣光的时刻。
从这看来,华罗庚是很坚强的人也是愚直的人。虽然有精神上的打击,社会上的打击,但是有这样性格会克服了所有的打击。人们都一样,如果碰到打击有人会逃避,有人会藏躲。我也是同样的人。有了困难现象逃走的办法,没有想过克服的办法。因为知道这克服的时间斌不容易,也有可能要很长时间。
很多人都怕这样的过程,就不容易面对打击。不过华罗庚在所有的打击面前振振有词地解决了。
在生活当中见面了各种各样的人。但我从来没看到像华罗庚一样拘泥的人。对一个方面不断的热忱和坚持连贫穷也挡不住他的拘泥的性格。这样性格会留下在历史上一篇的故事。
我可能永远赶不上华罗庚。但是我通过华罗庚学了一个很重要的部分。我是一个胆小鬼。发生了麻烦的是急于逃亡也可能找借口。看这篇华罗庚的日记可以学习了固执的热忱。灾顶之灾的情况也毅然接受的华罗庚!这样的态度就是我要学习的部分。我只看前面不看后面,不知道我多么幸福。总是觉得不满自己的情况,总是追一个梦想。
但是我从今天可以改变不管别人说什么只有自己坚固的心才会提高自己,有了热忱会找正道。
华罗庚的读书笔记篇四
《华罗庚科普著作选》是一部适合中学生阅读的数学课外读物,它集合了华罗庚几十年的数学研究成果的精华。虽然我在读这本书时,有一些难以理解的知识,或者说是我所学过的知识所不能及的篇章,我都做上了标记,以便今后学习了相关的基础知识后,能够重新理解那深奥的理论。
《从杨辉三角形谈起》中最核心的理论便是杨辉三角形基本性质,从中衍生出的二项式定理是非常重要的。而它的两个特例也让我大为惊叹(2ª和0的变形)。之后的级数也是围绕这个定理展开的。 《从祖冲之的圆周率谈起》给我留下深刻印象。华罗庚从祖冲之圆周率的约率7/22和密率355/113开始,介绍了辗转相除法和连分数,由此解释了约率和密率的由来。奥数老师曾讲过用辗转相除法求出两数的最大公约数,而华教授能进一步用连分数相加求出原两数之比的既约分数。从这小小的一点就能反映出华教授的刻苦钻研精神。之后谈到的有关天文和历法的科普知识,又让我大开眼界。
《从孙子的“神机妙算”谈起》中,我掌握了一种用辗转相除法解决一类同余问题,以及用这种方法来解二元一次方程。多项式的辗转相除法可帮助我们解决多项式的类似问题。
《数学归纳法》中,我没有过多的心得体会,因为胥老师已经介绍得比较全面了,但我也多学习到了一些解题。
《谈谈与蜂房结构有关的数学问题》中最让我长见识的是蜂房底部居然是由三个菱形构成的,其中一致的规律:钝角等于109°28′,锐角等于70°32′。蜜蜂计算这一角度比科学家还要准确,真是令人佩服。蜂房结构使得它利用的材料最少,体积最大,更是令人折服。 《天才与锻炼》使我懂得了天才不是天生的,而是后天锻炼出来的结果。
在书的第二部分华教授为我们展现了中国数学史辉煌的一页,还与我们探讨了学习科学的方法,比如:学科学需要热诚,更需要持久的热诚;学科学要有雄心,但不能越级而进,更不能钻牛角尖;学科学要能创造,但也要善于接受已有的成果;自修是能达到学习的目的,毅力和耐心是成功的保证等等。
在书的第三部分华教授讲述了数学应用方面的知识,其中令我记忆犹新的是“统筹法”和“优选法”。学会了“统筹法”就能使一件事乃至一项工程,以最高效率完成。学会了“优选法”就能在最少的时间里选出最佳的方案。
读完了这本书使我在数学殿堂里又见到了许多新奇的东西,让我大开眼界,让我受益匪浅。虽然这本书我没有完全读透,但在以后我掌握了更多的基础知识后,我一定会将未读懂的部分再次研读。