教案包括教学目标、教学内容、教学步骤、资源准备、学生活动等要素。编写教案时要注重教学资源的合理利用,提供多样化的学习材料和教学工具。以下是小编为大家收集的教案范例,供大家参考和借鉴。
平方差公式的教案篇一
平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。
学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。
难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.。
平方差公式的教案篇二
2、注意培养学生分析、综合和抽象、概括以及运算能力。
教学重点和难点。
难点:用公式的结构特征判断题目能否使用公式。
教学过程设计。
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。
让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。
在此基础上,让学生用语言叙述公式。
例1计算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。
例2计算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。
课堂练习。
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
例3计算(-4a-1)(-4a+1)。
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。
课堂练习。
1、口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。
2、运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
平方差公式的教案篇三
2.注意培养学生分析、综合和抽象、概括以及运算能力.
教学重点和难点。
难点:用公式的结构特征判断题目能否使用公式.
教学过程设计。
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
在此基础上,让学生用语言叙述公式.
二、运用举例变式练习。
例1计算(1+2x)(1-2x).
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.
例2计算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.
课堂练习。
(l)(x+a)(x-a);(2)(m+n)(m-n);。
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3计算(-4a-1)(-4a+1).
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.
课堂练习。
1.口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);。
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.
三、小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;。
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.
四、作业。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。
2.计算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
平方差公式的教案篇四
教学目标:
一、知识与技能。
1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。
二、过程与方法。
1、经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的。
数学式子表达出,即给出公式。
2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符。
号感和语言描述能力。
三、情感与态度。
以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.
教学重点:公式的简单运用。
教学难点:公式的推导。
教学方法:学生探索归纳与教师讲授结合。
课前准备:投影仪、幻灯片。
平方差公式的教案篇五
本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的。概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。
数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。
但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想象中掌握的那么好。
本章教材编者在此安排不太合理,没有考虑到学生的认知规律,不利于学生很好掌握,所以,我感觉以后上这章的时候不能按照教材课时安排走。否则还会出现今天的问题。
平方差公式的教案篇六
进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.
教学重点和难点:公式的应用及推广.
1.(1)用较简单的代数式表示下图纸片的面积.
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.
讲评要点:
沿hd、gd裁开均可,但一定要让学生在裁开之前知道。
hd=bc=gd=fe=a-b,
这样裁开后才能重新拼成一个矩形.希望推出公式:
a2-b2=(a+b)(a-b)。
2.(1)叙述平方差公式的数学表达式及文字表达式;。
(2)试比较公式的两种表达式在应用上的差异.
说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的`问题,否则容易对公式产生各种主观上的误解.
依照公式的文字表达式可写出下面两个正确的式子:
经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.
3.判断正误:
(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
(1)102×98;(2)(y+2)(y-2)(y2+4).
解:(1)102×98(2)(y+2)(y-2)(y2+4)。
=(100+2)(100-2)=(y2-4)(y2+4)。
=9996;。
(1)103×97;(2)(x+3)(x-3)(x2+9);。
(3)59.8×60.2;(4)(x-)(x2+)(x+).
3.请每位同学自编两道能运用平方差公式计算的题目.
例2填空:
思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?
(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)。
练习。
填空:
1.x2-25=()();。
2.4m2-49=(2m-7)();。
3.a4-m4=(a2+m2)()=(a2+m2)()();。
例3计算:
(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
=m4-14m2+49-n2.
1.什么是平方差公式?一般两个二项式相乘的积应是几项式?
3.怎样判断一个多项式的乘法问题是否可以用平方差公式?
(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
(1)69×71;(2)53×47;(3)503×497;(4)40×39.
平方差公式的教案篇七
1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)。
2.掌握平方差公式的应用.(重点)。
一、情境导入。
1.教师引导学生回忆多项式与多项式相乘的法则.
学生积极举手回答.
多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.
2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.
二、合作探究。
探究点:平方差公式。
【类型一】直接运用平方差公式进行计算。
平方差公式的教案篇八
平方差公式的教学已经是好几次了,旧教材总是定向于代数方法,新课程理念同几何意义探究,这也是对教学者的一次挑战,通过教学,我从中领会到它所蕴含的新的教学理念,新的教学方式和方法。
1、在教学设计时应提供充分探索与交流的空间,使学生进一步经历观察,实验、猜测、推理、交流、反思等活动,我在设计中让学生从计算花圃面积入手,要求学生找出不同的计算方法,学生欣然接受了挑战,通过交流,给出了两种方法,继而通过观察发现了面积的求法与乘法公式之间的吻合,激发了学生学习兴趣的同时也激活了学生的思维,所以这个探究过程是很有效的。
2、我知道培养学生数形结合思想方法和能力的重要性,通过几何意义说明平方差方式的探究过程,学生可以切实感受到两者之间的联系,学会一些探究的基本方法与思路,并体会到数学证明的灵巧间法与和谐美是很有必要的。
3、加强师生之间的活动也是必要的。在活动中,通过我的组织、引导和鼓励下,学生不断地思考和探究,并积极地进行交流,使活动有序进行,我始终以平等、欣赏、尊重的态度参与到学生活动中,营造出了一个和谐,宽松的教学环境。
平方差公式的教案篇九
这节课学习的主要内容是运用平方差公式进行因式分解,学习时如果直接就给同学们讲把前面在整式的乘法中学习到的平方差公式反过来运用就形成了因式分解的平方差公式,然后就是反复的运用、反复的操练的话,学生学起来就会觉得没有味道,对数学有一种厌烦感,所以我就想到了运用逆向思维的方法来学习这节课的内容,而且非常不利于学生理解整式乘法和因式分解之间的互逆的关系。
在新课引入的过程中,首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'将刚才用平方差公式计算得出的三个多项式作为因式分解的题目请学生尝试一下。可以说,对新问题的引入,是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。
在这节课中就明显出现了这个问题,许多学生容易产生的问题都集中在一起让学生解决,反而将学生搞得不清不楚。所以,通过这节展示课也让我学到了很多,比如,化解难点时要考虑到学生的思维障碍,不可操之过急,否则适得其反。
平方差公式的教案篇十
本节课选自人教版八年级上册第15章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式的学习提供了方法。因此,中公教育专家认为,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位。
二、说学情。
学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性,鉴于八年级学生的认知水平,理解上有困难。因此,我们把教学难点定为:理解平方差公式的。结构特征,灵活应用平方差公式。
三、说教学目标。
基于对教材的理解和分析,我在教学中以学生为主体,以学生的学为根本,我把本课的目标定位为:
知识与技能目标:了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题。
过程与方法目标:经历平方差公式产生的探究过程,培养观察、猜想、归纳、概括、推理的能力和符号感,感受利用转化、数形结合等数学思想方法解决实际问题的策略。
情感态度与价值观目标:通过探究平方差公式,形成学习数学公式的一般套路,体会成功的喜悦,培养团结协助的意识,增强学生学数学、用数学的兴趣。
教学重点:理解平方差公式的意义,掌握平方差公式的结构特征。
教学难点:运用平方差公式解决问题。
四、说教法、学法。
课堂是学生学习的主阵地,真正做到把课堂还给学生,因而我采取的的教学模式定为:三先两主动,即让学生先说话、先动手、先总结,让学生主动提问、主动探索。学习方法:学生积极参与、大胆猜想、合作交流和自主探索。
五、说教学过程。
(一)创设情景,引入新课。
数学课标强调:“数学来源于实际生活”,为了体现这一思想,我设计了一个实际问题。这里只提供情境,刺激学生主动提出问题,因为“提出问题”比“解决问题”更重要。这个以生活实例创设的情境,不仅激发学生的求知兴趣,又为平方差公式的引人服务,更为说明平方差公式的几何意义做好铺垫。
(二)合作交流,探求新知。
首先,我用情境中一道题目,并再安排了两个练习,通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习习近平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式。
顺势鼓励学生用自己的语言归纳表述,总结出公式,从而提高学生的语言组织与表达能力。
然后,教师通过分析公式的本质特征使学生掌握公式,在认清公式的结构特征的基础上,
进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果。
最后,用学生最喜欢的拼图游戏,引导学生从“形”的角度认识平方差公式的几何意义,再次验证了猜想。渗透了数形结合的思想,让学生体会到代数与几何的内在联系,引导学生学会从多角度、多方面来思考问题。
(三)巩固深化,内化新知。
总结出平方差公式后,我先设计两个简单练习题。通过练习,使学生加深对平方差公式结构特点的认识和理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件。
然后设计了三个例题。例1和例2是教材上的内容,例3是我设计的一道实际问题。
例1有两道小题,其中设计第(1)题,然后学生完成。第(2)题学生板演,师生共同纠错。例2有两道小题,先让学生尝试练习,出错后教师及时纠正,使学生认识深刻。第一题体现了转化的思想和数式通性;另一题是平方差公式与一般多项式乘法的综合,强调不能用公式的仍按多项式乘法法则进行。
例3运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习数学的价值,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解。
(四)反馈练习,巩固新知。
练习题的设计有梯度,从基础应用公式入手,到拓展提高。加强基本知识和基本技能训练,使不同水平的学生学习都有收获,体现出“人人学有用的数学”。
在练习的基础上,教师归纳总结,提升学习理念。
(五)当堂练习。
这部分给出两类练习题。
设计意图(第一类题是完全平方公式的直接应用,通过实例,使学生进一步体会到完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式)(第二道题直接给出一些同学的错误认识,强调错误原因并引导学生走出误区)。
(六)课堂小结。
设计意图:(让学生回想本节课的主要内容完全平方公式,教师再次强调并指出易错点和需注意的地方公式中项数、符号、字母及其指数。)。
(七)布置作业。
作业分必做题和选做题两部分。
设计意图:(必做题巩固本节课知识,让学生熟练应用公式。选做题为下节课的学习做铺垫,同时分层布置作业也满足了不同层次学生的要求)。