人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
列方程解决简单的实际问题教学反思篇一
线段图是四年级才教的解决问题的,但是从一年级就已经有线段图的题目出现在小朋友的面前,此时就应该让我们的小朋友对线段图有所了解。不应该等到要用了才开始学,那已经来不及了。所以有些老师认为线段图是高年级老师的任务,殊不知在中低年级就应该着手培养了。
空间关系同数量关系一样也是数学能力的基本内容,而且数和形是不可分开的。因此,学生掌握空间关系的知觉能力也是小学数学能力的重要组成部分。然而不少的数学教学方法,偏重于抽象逻辑思维的训练,造成了人的智力开发的残缺。当前许多教育整体改革实验,都提出使学生和谐发展,这都与充分开发脑功能有关。因此培养空间观念尤为重要了。
教师的指导、示范、点拨是培养学生画图能力的关键。学生刚学习画线段图,不知道从那下手,如何去画。教师的指导、示范就尤为重要。首先,教师可以指导学生跟教师一步一步来画,找数量关系。也可以教师示范画出以后,让学生仿照重画一遍,即使是把老师画的图照抄一边,也是有收获的。其次,学生可边画边讲,或互相讲解。教师对有困难的学生一定要给以耐心的指导。最后,学生掌握了一定的技能后,教师可以放手让学生自己去画,教师给以适时的点拨,要注意让学生讲清这样画图的道理,可自己讲,也可分组合作讲。
列方程解决简单的实际问题教学反思篇二
列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。
经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为x…。”x的后面会忘记加单位名称;还有个别同学会在求出的结果x=…,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的。
格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我想先教会学生找出题目中等量关系式的本领和方法。 我小结出平时做的练习题中经常会出现的一些等量关系,如下:
例如:甲乙两地相距1820千米,汽车每小时行130千米,求汽车从甲地到乙地需要多少小时?
等量关系式:速度×时间=路程。由此可以列出方程:
解:设汽车从甲地到乙地需要x小时。
x×130=1820
x=1820÷13
x=14
答:汽车从甲地到乙地需要14小时。
例如:平行四边形的面积是11.2平方米,底是5.6米,它的高是多少米?
等量关系式:底×高=平行四边形的面积,根据这个公式列出方程。
解:设平行四边形的高是x米。
5.6x=11.2
x=11.2÷5.6
x=2
答:平行四边形的高是2米。
类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:第一,找出题目中有比较意义的关键句;第二,按照关键句中,文字表述的顺序列出等量关系式。
例1:钢琴的黑键有36个,比白键少16个,白键有多少个?
第一,找出有比较意义的关键句“比白键少16个”,第二,按照关键句中文字描述的顺序,“比白键少”,“ 少”就是“减”,用“白键的个数-16个=黑键的个数”,再根据等量关系式列出方程。
解:设白键有x个。
x-16=36
x=36+16
x=52
答:白键有52个。
例2:一只大象的体重是6吨,正好是一头牛体重的15倍。一头牛的体重是多少吨?
第一,找出找出有比较意义关键句,“正好是一头牛体重的15倍”,第二,按照关键句中文字描述的顺序,“是一头牛体重的15倍”,看到“……的几倍”,应该用乘法,“一头牛体重×15=一只大象的体重”, 再根据等量关系式列出方程。
解:设一头牛的体重是x吨。
15x=6
x=6÷15
x=0.4
答:一头牛的体重是0.4吨。
另外,还要注意的是,其实每道题目都可以列出三个等量关系式,要提醒学生注意,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是x单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。
总之,列方程解实际问题只要找出数量间的相等关系,再列式就可以了,等量关系式变化很多,因此方法较多,从不同的角度找出不同的数量关系式,可以列出不同的方程。我觉得对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,选择适合自己的一种方法就可以了,并且要养成良好的检验习惯。
列方程解决简单的实际问题教学反思篇三
列方程解决简单实际问题,是在五年级(上册)初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是一种解决逆思维的解题方法。通过我的教学实践,我觉得学生在学习这个单元的过程中,还要抓好以下几个方面的问题:
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的标准量,根据标准量找出题目中直接的等量关系,然后列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生学会抓住标准量来分析与思考,就能很快提高解题能力。
在分析标准量的同时,我们要通过找出标准量、用语言分析标准量,提高学生的思维能力,例如:在“妈妈的年龄是桐桐的4倍,妈妈比桐桐大24岁。妈妈和桐桐的年龄各是多少?”这一题中,我先让学生说单位“1”的量(即标准量)以及怎样设。再找出数量间的相等关系。学生在小组交流相互补充,多次通过语言表达训练,学生分析标准量、列出相等关系的口头表达能力也提高了,也掌握了探究知识的方法。
在学生学会找准标准量、分析标准量的基础上,还要结合学生的掌握情况进行基础性、综合性等训练。在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是香蕉的1.5倍,如果香蕉是x千克,那么苹果和香蕉一共有xx千克,苹果比香蕉多xx千克,香蕉比苹果少xx千克……,类似这样的题目,让学生弄清每一个式子所表示的意义,经过一段时间的训练,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还通过适当的变式题目,训练学生的综合思维,提高学生的解题难度,促进学生的思维不断得到提高。
最后跟孩子们一起回顾列方程解决实际问题的整个过程,并总结出了六步曲:找数量关系式——解设——列方程——解方程——写答语——检验。教学中我反复训练,让学生在学习、辨析、交流与反馈表达中不断开阔思维,从中感受到学习的乐趣,增强学习数学的信心,学习效果很好,达到了预期的目的。
列方程解决简单的实际问题教学反思篇四
《列方程解决简单实际问题》教学反思列方程解决简单实际问题,是在四年级下册初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是一种解决逆思维的解题方法。本周教研活动我们四年级组内听刘淑萍老师的课,对刘老师的课堂给予很高的评价,
一赞刘老师课堂敢于放手,把主动权教给学生;
二赞小组合作交流分工明确,真实高效;
三赞刘老师平时注重习惯的培养。课后评课我们都羡慕这样的课堂,都迫不及待的让刘老师传经送宝,之后我也在课堂上采用同样的方式进行教学。通过我的教学实践,和刘老师的课堂进行对比,反思自己的课堂还要抓好以下几个方面的问题:
一、重视等量关系式分析训练解决实际问题首先要引导学生分析题目的条件和问题,找出题目中等量关系,然后列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生学会抓住等量关系来分析与思考,就能很快提高解题能力。
二、重视学生的语言训练。在解决问题时刘老师采用以三人小组交流的方式分析解决问题。如:1号同学讲,2号、3号听;或是3号、1号分析题意,2号书写等,分工合作,共同完成。小组内交流人人参与,人人思考,人人表达,因此刘老师的课就是思维的课堂,知识的火花在交流中碰撞、升华。同时小组交流的一大好处就是带动后进生,带动跑神的学生,让他参与到课堂中,带动他们一起进步!与刘老师的课堂相比,我需要加强学生的语言表达能力,就像刘老师所说,刚开始不能急,要慢节奏,教给孩子怎样说,怎样小组交流,正如磨刀不误砍柴工,练上一个月,一个学期,你就会有不一样的收获。
三、重视学生解决问题思路训练回顾列方程解决实际问题的整个过程,刘老师让学生总结出了七步:读(读清题意)--找(找数量关系式)——解设(未知数x)——列(列方程)——解(解方程)——检(口答检验)--答(写答案)。方法的引领比获得的知识更重要,告诉学生以后碰到类似的问题如何解决。教学中刘老师一节课教学内容我用了两节课时间训练让学生在学习、辨析、交流与反馈表达中不断开阔思维,从中感受到小组学习的乐趣,增强学习数学的信心,学习效果很好,初步达到了预期的目的。课堂属于学生,课堂的精彩不在于老师多么优秀,在于学生的出彩,在以后的教学中,我要慢慢践行放手小组合作交流学习,给学生更多的思考时间,更大的展示空间,让我的数学课堂更有魅力。
列方程解决简单的实际问题教学反思篇五
本课是在学生认识了方程,学会解只含有一步计算的方程的基础上,运用等量关系列方程解决简单的实际问题。列方程解决实际问题既是解决问题的一种策略,又是十分重要的数学思想方法,对以后的数学乃至其他一些学科的学习发挥着基础作用。例题本身是一道需要逆向思考的减法实际问题,教材也比较完整的呈现了列方程解决这个实际问题的步骤,其中解方程的过程留给学生去完成。教学时引导学生列出不同的方程解决问题,让学生感受列方程方法的多样性。
我认为本课的关键是教会学生会根据题意找出数量关系,并列出相应的方程。因此要做到:
1、现在学生相对的分析说明能力比较薄弱,针对这一点,我让学生多观察以及及时的分析说明,可以培养学生的观察能力、理解能力及分析能力。
2、等量关系的寻找对于列方程解决实际问题是很重要的,针对它的重要性,我相机渗透了一些简单的寻找等量关系的方法,并要求学生每一题都要说一说数量关系。既加深了学生对于学习方程时对数量关系的重视,也在间接的培养学生的解题能力。
3、列方程解决实际问题是学生第一次接触,一般的步骤是必须要遵守的,老师可以让学生模仿老师的书写格式,虽然是模仿,但也算是有接受的学习,一方面让学生自主探索,一方面也让学生有计划的记忆。在解题以及展示过程的过程中,尽量让学生多说,要让学生充分发挥主动性,真正发挥学习的主体作用。
4、强调了算术方法与方程的区分。通过例题与试一试的练习,让学生发现每道题实际上都可以找出三个数量关系,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是x单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,这种列方程实际上是在用算术方法解题,而不是方程的方法,这样就和算术解法差不多了,方程也就失去了它的意义。
关于《列方程解决简单实际问题》的教学反思
列方程解决简单实际问题,是在五年级(下册)初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础。通过我的教学实践,我觉得学生在学习这个单元的过程中,还要注意以下几个方面的问题:
一、重视关键句分析训练,提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中直接的相等关系,这样可以便于学生列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生如果学会抓住关键句来分析与思考,能很快提高解题能力。
二、重视学生的语言训练,提高学生的表达能力。
在分析关键句的同时,我们要通过找出关键句、用语言分析关键句,提高学生的思维能力,例如:在“爸爸的年龄是小红的4倍,爸爸比小红大24岁。爸爸和小红的年龄各是多少?”这一题中,先让学生说说单位“1”的量以及怎样设。再根据哪一句可以找出数量间的相等关系。我在教学中采用小组交流相互补充和提高,多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力,让学生在学习的过程中掌握探究知识的方法。
列方程解决简单的实际问题教学反思篇六
列方程解决实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。
六年级数学(上册)的第一单元就是在学生五年级学过的解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。如果小雁塔的.高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。
在教学例2时我通过出示学生熟悉的生活素材:六(1)班有学生48人,男生是女生人数的1。4倍。让学生独立思考和讨论找出题目中的相等关系,学生根据全班48人,知道用“男生人数+女生人数=全班人数”的相等关系,再结合“男生是女生人数的1。4倍。”把题目中的女生人数看做1倍数,那么男生人数就是1。4倍数,如果用x表示女生人数,那么男生人数就是1。4x,这样方程就很快列出来:1。4x+x=48;
如果把第一个条件改成“合唱组男生比女生多48人。”又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。
通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。
在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。
在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2。5倍,如果梨是x 千克,那么苹果和梨一共有x千克,苹果比梨多x千克,梨比苹果少x千克……,类似这样的题目,长期用短时间训练学生的表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把“合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。”这样基础题目通过改编成以下的题目:“合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。”让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。
教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。
列方程解决简单的实际问题教学反思篇七
苏教版小学五年级下册第一单元《方程》第8—9页。这部分内容是在理解方程的含义,会用等式的性质解简单方程的基础上进行教学的。本节课主要解决列方程求“相差关系”和“倍数关系”的问题。学好本节内容将为以后学习打下基础。教材通过例7,试一试,练一练及练习二第5、6、7题完成任务。
“列方程解决简单的实际问题”的教学,既要让学生掌握列方程解决简单实际问题的一般过程,学会列方程解决一步计算的实际问题,更要让学生学会思考解决问题的方法。
列方程解决简单的实际问题,和用算式方法解决简单的实际问题有不同的地方,除了形式上的不同,更有思考方法上的不同。教材安排的“例7”是一幅情境图,理解图的意思是必须的,我的教学中引导学生进行摘录:小刚的跳高成绩是1.39米,比小军的跳高成绩少0.06米,小军的跳高成绩是多少米?情境图虽然直观,但表达的信息零星,需要整理,整理也是学好数学的重要方法,其中摘录是常用的整理方法。理解情境图的意思是解决实际问题的前提条件,算式方法、方程方法都必须有这一环节。
“含有未知数的等式是方程”。方程既然是等式,就要从数量间的相等关系入手思考,上题可以从关键句“小刚的跳高成绩比小军少0.06米”寻找,这句话蕴含的数量间的相等关系有二:一是小军的跳高成绩-0.06米=小刚的跳高成绩;二是小军的跳高成绩-小刚的跳高成绩=0.06,应用“大数-小数=相差数”这一规律悟得。
在明确题中数量间的相等关系的基础上,教师指出:“小军的跳高成绩不知道,可以设为x米,再列方程解答。”这里教师的讲授,就是为了让学生体验列方程解决要把未知量与已知量结合起来进行列式,体验和算式解决问题的不同。到此,形成了“整理信息—找相等关系—列方程”的思维框架。至于“列方程解决简单的实际问题”的书写格式,可以通过模仿课本、讨论交流、教师指导、作业反馈来熟悉,熟悉“写设句-列方程-解方程—检验写答句”是列方程解决实际问题的一般步骤。
第一堂课学生的课堂作业有许多毛病,如:解写了两个,“设”前面写了一个,解方程时又写了一个;假设未知数x时后面缺了单位;求得的未知数的值的后面多了单位等等。虽然有诸多的问题,但利用课间小组长的力量和练习课的专门辅导,基本得到全面解决。
“列方程解决简单的实际问题”是用方程方法解决问题的起始阶段,让学生明晰“整理信息—找相等关系—列方程”的思维框架,有着重要的意义,学生们可以用这样的思维框架去用方程解决简单的、复杂的实际问题。还有,要重视找数量间相等关系方法的积累,如根据“部分数+部分数=总数”、公式、常见的数量关系式等去寻找。长此以往,随着解决问题经验的不断丰富,数学学科的质量也会同步提高!
列方程解决简单的实际问题教学反思篇八
列方程解决实际问题与学生之前学过的算术法解决问题的相同之处都是需要分析数量关系,区别在于思考方法不同,列方程解决实际问题时,把未知数用字母表示和已知数一同参与列式,运用顺向思维列出方程,在解决某些实际问题时有着明显的优势。如:“已知一个数的几倍多(少)几,求这个数”的问题若用算术法解,需逆向思考,思维难度大,用方程解决,思考是顺向的,学生容易理解。
列方程解决问题的难点是找等量关系,在教学中先让学生学会找等量关系,可从以下几个方面训练。
1、引导学生先找出题中的关键句。如“白色皮的块数比黑色皮的块数的2倍少4块”,引导学生顺着句意把文字叙述‘翻译’成数学语言),很容易写出等量关系:白色皮的块数=黑色皮的块数×2-4。
2、根据学生已经熟练地数量关系确定等量关系。如:速度×时间=路程,单价×数量=总价,工作效率×时间=工作总量。
3、根据几何公式建立等量关系。
总之,列方程解决实际问题只要找出数量间的相等关系,再列方程就可以了,等量关系式变化多,因此方法也多,从不同的角度找出不同的数量关系式,可以列出不同的方程。对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,并且要养成良好的检验习