每个人都值得拥有一份总结,它是我们成长道路上的里程碑。总结的过程中,我们要保持客观和中立的态度,不受个人情感和偏见的影响。在下面将呈现出一些具有代表性的总结示例,以供大家参考。
高考数学答题技巧篇一
高考数学答题技巧:考试最后15分钟很重要,把前边题认真做好才能做好高考数学压轴题。
训练。数学思想包括四大方面:涵数方程、数形结合、分类讨论、转化与化归,这四者的核心都是转化。在转化中学生容易忽视直接转化和等与不等的转化,考试时不常想到这两种方式,导致不少题做不出来。
考试时间有限,合理选择运算途径可以节省时间,得出准确的运算结果。很多同学是不撞南墙不回头,一条道走到黑,想到一种方法,就立马着手运算,结果算了半天也算不出答案。柳老师说,正确的方法应当是在看完题后,先预测一下所选择的途径是否麻烦,权衡一下再下笔。运算过程中要灵活运用公式、法则和相关的运算律,尤其是选择合理的数学思想,以提高解题速度。答题一定要规范,使用数学术语。复习时要养成做完题认真检查的习惯,看看是否有空题没做,字母、符号、答案是否抄错。细节决定成败,做题时一定要细心。
一般来说,后边的题分值比较大,很多同学老觉得后边的压轴大题才是挣分的题。考试时做前面的题就比较毛躁,一心求速度,忽视了质量,以至明明可以做对的题都丢分了。柳老师说:高考首先要保证把题做对,不能一味想着把题做完。前面的题认认真真做好了,底气也就足了,可以有一种更好的心态去做后面的压轴题。这才是一个良性循环。
高考数学答题技巧,考试只剩15分钟时,很多同学就开始不安了,把试卷翻来翻去,结果什么也没做成。其实,同学们应该保持坦然的心态,冷静思考。如果此时题目没做完,也千万不要慌,15分钟也是可以做完一道大题的。就算题目都做完了,也要充分利用好最后的15分钟,说不定在这最后的时间里,你会有意想不到的收获。
高考数学答题技巧篇二
(很多无规律的公式大家是不是都容易记混呢?如果你也有类似的困扰,也许高考数学知识点公式定理记忆口诀能帮的到你~)
3.注意题目中的小括号括起来的部分,那往往是解题的关键;
1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。切记不要“小题大做”,具体方法点击链接查看......
1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
具体方法步骤详解:
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
例题:方程sinx=lgx的根的个数为:( )
a 1个 b 2个 c 3个 d 4个
3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……
4.选择与填空中出现不等式的题目,优选特殊值法。
【填空题详解】四大高考数学填空题的解题技巧
【选择题详解】学霸分享20xx高考数学选择题解法?
6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。
7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。
8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。
9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;回忆椭圆离心率公式:回忆双曲线离心率公式;。
12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题。
15.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义。
16.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移用坐标系转化为口诀平移就可以了。
17.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
精彩请先看:
1.答题时间共120分,而你要答分数为150分的考卷,算一算就知道,每分钟应该解答1分多的题目,所以每1分钟的时间都是重要的。试卷发到手中首先完成必要的检查(是否有印刷不清楚的地方)与填涂。之后剩下的时间就马上看试卷中可能使用到的公式,做到心中有数。用心算简单的题目,必要时动一动笔也不是不行(你是写名字或是写一个字母没有人去区分)。
3.答题的时间紧张是所有同学的感觉,想让它变成宽松的方法只有一个,那就是学会放弃,准确的判断把该放弃的放弃,就为你多得1分提供了前提。
4.冷静一下,表面是耽误了时间,其实是为自己赢得了机会,可能创造出奇迹。在头脑混乱的时候,不防停下来,喝口水,深吸一口气,再慢慢呼出,就在呼出的同时,你就会得到灵感。
5.题目分析受挫,很可能是一个重要的已知条件被你忽略,所以重新读题,仔细读题才能有所发现,不能停留在某一固定的思维层面不变。联想你做过的类似的题目的解题方法,把不熟悉的转化为你熟悉的也许就是成功。
俗话所适合自己的才是最好的,答题也不例外,以上这些常见的高考数学答题技巧只是给大家一个参考,在实践的过程中大家要不断把这些内容转化成真正适合自己的东西,相信你一会取得理想的成绩,更多答题技巧请持续关注数学网高考数学栏目。
高考数学答题技巧篇三
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
1.选择题分数所占比例高,约占750分的40%以上,即315~330分。
2.选择题可猜答,有一定几率不会做也能得分。
3.选择题容易丢分也容易得分,单题分值较大,而且存在干扰选项做误导,选择题好坏能决定你与他人的优势或劣势。
4.选择题可快速答题,留下时间做大题,也可浪费你大量时间,叫你来不及做题。
5.掌握选择题答题技巧可做到所有科目选择题既能快速解答,又能获取满分。
高考数学答题技巧篇四
在数学家波利亚的四个解题步骤中,第一步审题格外重要,审题步骤中,又有这样一个技巧:当你对整道题目没有思路时:步骤(1)将题目条件推导出“新条件”,步骤(2)将题目结论推导到“新结论”.
步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。
步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!
最后要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。
高考数学答题技巧篇五
平移问题:永远记住左右平移只是对x做变化,上下平移就是对y考点:对于这类题型我们首先要知道它一般都是考我们什么,我觉做变化,永远切记。
b、概率解题技巧
解题思路:布列、期望、方差的公式,难度也是不大,都属于送分题,是要求第一步就是根根据向量公式将表示出来:其表示共有两种方法,一我们必须拿全部分数。
导公式(只要题目出现了跟或者有关的角度,一定想到诱导公式),题目。
解题思路:
第一步就是求出总体的情况
第二步就是求出符合题意的情况
第三步就是将两者比起来就是题目要求的概率
这类型题目对理科生来说一定要掌握好期望与方差的公式,同时最重要的是独立重复试验概率的求法。
c、几何解题技巧
考点:这类题主要是考察咱们对空间物体的感觉,希望大家在平时学习过程中,多培养一些立体的、空间的感觉,将自己设身处地于那么一个立体的空间中去,这类题对文科生来说,难度都比较简单,但是对理科生来说,可能会比较复杂一些,特别是在二面角的求法上,对理科生来说是一个巨大的挑战,它需要理科生能对两个面夹角培养出感情来,这样辅助线的做法以及边长的求法就变得如此之简单了。
题型:这种题型分为两类:第一类就是证明题,也就是证明平行(线面平行、面面平行),第二类就是证明垂直(线线垂直、线面垂直、面面垂直);第二就是计算题,包括棱锥体的体积公式计算、点到面的距离、有关二面角的计算(理科生掌握)解题思路:
证线面平行如直线与面有两种方法:一种方法是在面中找到一条线与平行即可(一般情况下没有现成的线存在,这个时候需要我们在面做一条辅助线去跟线平行,一般这条辅助线的作法就是找中点);另一种方法就是过直线作一个平面与面平行即可,辅助面的作法也基本上是找中点。
证面面平行:这类题比较简单,即证明这两个平面的两条相交线对应平行即可。
证线面垂直如直线与面:这类型的题主要是看有前提没有,即如果直线所在的平面与面在题目中已经告诉我们是垂直关系了,那么我们只需要证明直线垂直于面与面的交线即可;如果题目中没有说直线所在的平面与面是垂直的关系,那么我们需要证明直线垂直面内的两条相交线即可。
其实说实话,证明垂直的问题都是很简单的,一般都有什么勾股定理呀,还有更多的是根据一个定理(一条直线垂直于一个面,那么这条直线就垂直这个面的任何一条线)来证明垂直。
证面面垂直与证面面垂直:这类问题也比较简单,就是需要转化为证线面垂直即可。
体积和点到面的距离计算:如果是三棱锥的体积要注意等体积法公式的应用,一般情况就是考这个东西,没有什么难度的,关键是高的寻找,一定要注意,只要你找到了高你就胜利了。除了三棱锥以外的其他锥体不要用等体积法了哈,等体积法是三棱锥的专利。二面角的计算:这类型对理科生来说是一个噩梦,其难度有二,第一是首先你要找到二面角在什么地方,另一个难度就是你要知道这个二面角所在直角三角形的边长分别是多少。
二面角(面与面)的找法主要是遵循以下步骤:首先找到从一个面的顶点a出发引向另一个面的垂线,垂足为b,然后过垂足b向这两个面的交线做垂线,垂足为c,最后将a点与c点连接起来,这样即为二面角(说白了就是应用三垂线定理来找)
二面角所在直角三角形的边长求法:一般应用勾股定理,相似三角形,等面积法,正余弦定理等。
这里我着重说一下就是在题目中可能会出现这样的情况,就是两个面的相交处是一个点,这个时候需要我们过这个点补充完整两个面的交线,不知道怎么补交线的跟我说一声。
d、圆锥曲线解题技巧
考点:这类题型,其实难度真的不是很大,我个人理解主要是考大家的计算能力怎么样,还有就是对题目的理解能力,同时也希望大家都能明白圆锥曲线中a,b,c,e的含义以及他们之间的关系,还有就是椭圆、双曲线、抛物线的两种定义,如果你现在还不知道,趁早去记一下,不然考试的时候都不知道的哈,我真的无语了。题型:这种类型的题一般都是以下几种出法:第一个问一般情况就是求圆锥曲线方程或者就是求某一个点的轨迹方程,第二个问一般都是涉及到直线的问题,要么就是求范围,要么就是求定值,要么就是求直线方程解题思路:
求圆锥曲线方程:一般情况下题目有两种求法,一种就是直接根据题目条件来求解(如题目告诉你曲线的离心率和过某一个点坐标),另一种就是隐含的告诉我们椭圆的定义,然后让我们去琢磨其中的意思,去写出曲线的方程,这种问法就比较难点,其实也主要是看我们的基本功底怎么样,对基础扎实的同学来说,这种问法也不是问题的。求轨迹方程:这种问题需要我们首先对要求点的坐标设出来a(x,y),然后用a点表示出题目中某一已知点b的坐标,然后用表示出来的点坐标代入点b的轨迹方程中,这样就可以求出a点的轨迹方程了,一般求出来都是圆锥曲线方程,如果不是,你就可能错了。直线与圆锥曲线问题:三个步骤你还知道吗(一设、二代,三韦达)。
先做完这个三个步骤,然后看题目给了我们什么条件,然后对条件进行化简(一般的条件都是跟向量呀,斜率呀什么的联系起来,希望大家注意点),在化简的过程中我们需要代韦达进去运算,如果我们在运算的过程中遇到了,一定要记得应用直线方程将表示出来,然后根据韦达化简到最后结果。最后看题目问我们什么,如果问定值,你还知道怎么做么,不知道的就现在来问我,如果问我们范围,你还知道有一个东西么(),如果问直线方程,你求出来的直线斜率有两个,还知道怎么做么,如果要想舍去其中一个,你还记得一个东西么()。同时如果你是一个追求完美的人,我希望你在做题的时候考虑到直线斜率存在与否的问题,如果你觉得你心胸开阔,那点分数我不要了,我考虑斜率存不存在的问题,那么我就说你牛!!
个人理解的话,圆锥曲线都不是很难的,就是计算量比较复杂了一点,但是只要我们用心、专心点,都是可以做出来的,不信你慢慢的去尝试看看!
e、函数导数解题技巧
你还谈什么做题呢。在导数这块,我是希望大家都能尽量的多拿一些分数,因为其难度不是很大,主要你用心去学习了,记住方法了,这个分数对我们来说都是可以小菜一碟的。题型:最值、单调性(极值)、未知数的取值范围(不等式)、未知数的取值范围(交点或者零点)解题思路:
最值、单调性(极值):首先对原函数求导,然后令导函数为零求出极值点,然后画出表格判断出在各个区间的单调性,最后得出结论。未知数的取值范围(不等式):其实它就是一种一种变相的求最值问题,不知道大家还记得么,记住我讲课的表情,未知数放在一边,把已知的数放在另外一边,求出相应的最值,咱们就胜利了,这个种看起来很复杂,其实很简单,你说呢。未知数的取值范围(交点或者零点):这种要是没有掌握方法的人,觉得:哇,怎么就那么难呀,其实不然,很简单的,只是各位你要明确这种题的解题思路哈。首先还是需要我们把要求的未知数放在一边,把知道的数放在一边去,这样去求出已知数的最值,然后简单的画一个图形我们就可以分析出未知数的取值范围了,说起来也挺简单的,如果有什么不了解的,可以马上问我,不要留下遗憾。
f、数列解题技巧
考点:对于数列,我对大家的要求不是很高,我只是希望大家能尽自己的所能,尽量的去多拿分数,如果要是有人能全部做对,我也替你高兴,这类题型,主要是考大家对等比等差数列的理解,包括通项与求和,难度还是有的,其实你要是留意生活的话,这类题还是不是我们想象中那么困难哈。
题型:一般分为证明和计算(包括通项公式、求和、比较大小),解题思路:
证明:就是要求我们证明一个数列是等比数列后还是等差数列,这种题的做法有两种,一种是用,或者,我们就可以证明其为一个等差数列或者等比数列。另一种方法就是应用等差中项或者等比中项来证明数列。计算(通项公式):一般这个题都还是比较简单的,这类型的题,我只要求大家能掌握其中题目表达式的关键字眼(如出现要用什么方法,如果出现要用什么方法,如果出现如果出现),我相信通项公式对大家来说应该是达到驾轻就熟的地步了,希望大家能把握这么容易的分数。
求和:这种题对文科生来说,应该知道我要说什么了吧,王福叉数列(等比等差数列)呀!!,三个步骤:乘公比,错位相减,化系数为一。光是记住步骤没有用的,同时我也希望同学们不要眼高手低,不要以为很简单的,其实真正能算正确的不一定那么容易的,所以我还是希望大家多加练习,亲自操作一下。对理科生来说,也要注意这样的数列求和,同时还要掌握一种数列求和,就是这个数列求和是将其中的一个等差或等比数列按照一定的顺序抽调了一部分数列,然后构成一个新的数列求和,还有就是要注意了如果题目里面涉及到这个的时候,一定要记住数列相互奇偶性的讨论了,非常的重要哈。
比较大小:这种题目我对大家的要求很低,因为一般都是放缩法的问题,我也不是要求大家非要怎么样怎么样的,对这类问题需要我们的基本功底很深,要学会适当的放大和放小的问题,对这个问题的把握,需要大家对一些经常遇到的放缩公式印在脑海里面。
补充:在不是导数的其他大题中,如果遇到求最值的问题,一般有两种方法求解,一种是二次函数求最值,一种就是基本不等式求最值。
1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
4、选择与填空中出现不等式的题目,优选特殊值法;
数学大题的题型与技巧如下:
一、数列题
3、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。
二、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
三、概率问题
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、注意计数时利用列举、树图等基本方法;
5、注意放回抽样,不放回抽样;
6、注意零散的知识点(茎叶图、频率分布直方图、分层抽样等)在大题中的渗透。
四、圆锥曲线问题
2、注意直线的设法,知道弦中点时,往往用点差法,注意自变量的取值范围。
高考数学答题技巧篇六
高考数学题选择题占40%的比重,把握好选择题是考取高分的基础。选择题中一些特殊方法,如排除法、特殊值法、特殊图形法、极限思想等的合理运用会使结果更准确,速度更快,尤其是遇到较难的题目,首先应考虑是否可以用这些方法来解。有些题目其实就是考查学生灵活应对能力的,常规思维很难解决。而哪些题目可以用此法,关键是看题中所给的条件和所求结论是否在一定范围内具有一般性。
这里提一下特殊值法,特殊值法最适合的是选择题,尤其适合的是选项里都是一个答案的题目,可以直接用特殊值代入验证。不过,用特殊值要熟练,思路要清晰,基础知识要完全考虑到,而且不能脱离题干,不然很容易得出错误的结论。另外,特殊值法并不是只是代入一个特殊值就好了,可以尽量把能想到的两三个特殊值代进去,比如在三角形中,特殊值可以代入30、60、90,但同时也应该注意三角形边角比例的关系,不然很容易得出错误的答案,这样就得不偿失了。
示例
解析
这里解析中取的特殊值是等边三角形,三个内角均为60,如果取三个角分别为30、60、90,虽然同样是我们比较熟悉的特殊值,但却跟题干中所提到的三个角对应的三条边a、b、c为等差数列不符,自然就无法得到正确答案了。
概念要清,方法要对,计算要准。填空题对思维的严密和计算的准确性要求都很严格。符号、小数点的错误都会造成劳而无获,因此要特别注意运算的规范,要一丝不苟,不可贪快不细,做无用功。
这一类型的题目的要求除了与填空题相同外,还应注意:
1、注意分步解答题目的形式,若各个小问题由一个大前提统领,则很可能上面的结论是下面问题的条件,要注意这一点,同时若小问题单独添加了限制条件,则其结论不可应用于下一个小问题的解答,所以应仔细审题,不可疏忽。
2、在运算过程中要求一次性运算准确,否则若出现运算失误,考生往往受思维定式的影响,很难检查出来。只要细心了,对自己就要有信心,不要一道题做了再反复去检查是否准确,那样会浪费大量宝贵的时间,在此问题上应把握宁慢勿粗。
3、对于解答题,要注重通性通法,不要过于追求技巧,把高考神秘化。因为高考越来越注重基础与通性通法的考查。举个例子来说吧,解析几何对大部分学生来说很难得全分,通常解析几何放在高考最后一题或倒数第二题的位置,算是一个压轴题吧。这类解析几何题的通法就是把直线方程与曲线方程联立,虽然有些时候可能计算会比较麻烦,但是都能做得出来。如果过于关注技巧,对有些题目就不适用了。
如以下的题目,就是直线和双曲线方程联立的一道题:
4、对绝大部分同学来说,要把主要精力和时间放在常规题目上(一般是指前19道题和最后1道选做题)。从高考的试卷来看,它的基础分可能会占到百分之七八十,如果你把基础题、常规题做好了,取得中等成绩是没问题的。在这个基础上,再拿一些难题的分数,就能获得比较理想的分数了。反过来,如果求快心切,就很容易在前面的基础题上出现本来可以避免的失误,而后面的难题又不一定得分,这样和别人的差距就拉大了,很吃亏。
高考数学答题技巧篇七
高考立体几何试题一般共有4道(选择、填空题3道, 解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合
1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2、判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3、两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
解答题分步骤解决可多得分
01、合理安排,保持清醒。
数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。
02、通览全卷,摸透题情。
刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
03、解答题规范有序。
一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。
对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。
比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。
有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
高考数学答题技巧篇八
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。
2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
高考数学答题技巧篇九
数学是很多高三考生头疼的科目,进入二轮复习阶段,高效复习就显得很重要。4月2日,记者采访了曾参与高考数学阅卷的青岛15中数学名师申晓梅。
申晓梅是中学高级教师,教龄25年,20xx年被山东省聘为“高考数学阅卷教师”,并在青岛市高三一轮研讨会上作“高考阅卷收获”经验交流。
“二轮复习在学校的复习模式都是专题+周考试,建议同学在每个专题复习前自己先构建出这一部分的知识结构图。记牢概念公式和常用解题结论,同时要明辨这一部分的易错易混知识点。”申老师说。
“这就要建立纠错本,在每一次考试或练习中,要及时纠错,还可以把错题分类整理,通过对错题的诊断,找出自己出错的原因,是计算问题、审题问题,还是哪些知识点和方法技能掌握不牢固,进而对错题反思和‘深加工',从而在纠正中提高分析问题和解决问题的能力。”申晓梅表示,要拿出改错本经常翻看,加深理解。
申晓梅表示,高考试题着重是对知识的通性通法和数学思想方法的考查,高三二轮复习中要重视运用函数思想、方程思想、数形结合思想和分类讨论思想来解决问题,只有这样才能在解题时游刃有余,达到高考考查学生学习的能力和未来运用知识发展自我能力的目的。
申老师通过高考阅卷,总结出“四个答题技巧”.
技巧1:借问得分
阅卷时,特别强调知识点的把握,在解题的过程中,要把定理的条件和结论写全,中间的步骤可以省略,如文科立体几何题中,第一小题只要写清垂直的条件和结论,即使不会证明,也要写上结论(只要条件和结论都有就可得分),就是中间一步不会证明,也可以写上结论,跳过去往下证,这样后面的仍可得分。
技巧2:难题“割肉”
学生平时训练时,应对自己提出明确的要求,题目再难,每个题目中的条件总是可以推导出结论的,哪怕是只推导出一个结论,也可能是得分点,有了得分点,也就说明得分了。高考阅卷时是按步骤、按得分点给分的。
技巧3:步骤规范
学生在平时训练时,要明确哪些步骤是可省的,哪些是不可省的,哪些是必须写的,哪些是不可写的,在做题时,尽量按得分点、按步骤书写,严格训练。切忌拖沓冗长,模糊不清。
技巧4:重视书写
要用0.5毫米的黑色墨水签字笔作答。因为标准的扫描试卷尺寸是十四寸,正好填满屏幕。因为是扫描,所以如果字迹过细、过淡,可能会影响阅卷人的正常判断。其次,答题时,字迹要工整、清楚,不要写得太细长;字距适当,行距不宜过密。最后,要严格按照答题要求,在答题卡对应题号指定的答题区域内答题,书写在规定区域内。要注意几个易混字的书写规范,如“z、z、2”,“b、6、0、9、q”,“4、+”等,若不注意书写,电子卷就不太容易区分。
高考数学答题技巧篇十
眼下,高三学生已经进入复习阶段。常常听见有学生抱怨,在做模拟高考试题时,时间总是紧巴巴地,但是又不敢减少计算思考步骤。那么,究竟如何才能兼得分数与速度呢?今日为大家支招。
对于学生所抱怨的做题速度慢,主要是四个方面的原因:一是题目不熟练。表现在对知识点本身不熟悉、解题思路不熟悉(思维不熟)、分析能力不足;二是能力不足。表现为计算能力不足、写字速度慢、阅读速度慢、接受信息能力不足(即不了解题目表述涵义);三是性格原因。马虎、粗心都可以归结于急躁,很多同学读题时快速读完却不了解其表达内容,或者是还没读完就开始写答案了;四是做题习惯。很多同学拿到题闷头就做,事先考虑都不考虑,发现做错了才回头看。也有的同学看到题目不认识,就犹豫要不要先做,导致不知不觉地浪费时间。
“对此,高三考生要进行高效做题训练。”,“建议同学们无论是出于冲刺角度还是做题速度训练角度,都用简单题和中等题来训练。并且顺序是从选择题开始,然后是简单、中等的解答题,而后是填空题,最后有时间了才去练习练习所谓的”最后一题“”。
在选择题训练上,要减少死记硬算,多加入思考的比重。处理选择题上,思维和技巧摆在第一位。要充分利用题目和选项之间的暗示,多比较少计算,多动脑少“动手”。如特殊值的代入、选项的代入,多用直接法(直接理解)、排除法(选项逆推)等,少从头到尾死算。选择题是只考虑结果而不考虑中间过程的题型,要始终本着“少算少错,多算多错”的道理,加大理解分析判断等比例做题,这样不仅可以提高选择题的准确率,也能大量缩短考试时间,既达到短期内提升成绩的目的,也达到提高做题速度的目的。
“至于中等题和简单题,我们要总结做题过程的思维和解答步骤,你会发现即使是不同的题型,在解题思路上有太多的相似点。把这些相似点总结出来,你会发现可以应用到各个题型。”袁燕说:“如理综的物理,几乎都是按照题目表述的步骤罗列表达式,然后联立求解即可得出结论。如数学除了排列组合,其他题只要你能正确地用式子或未知数表达出题意,通过补充题目和所求差距,或寻找问题成立的前提条件(正向推导和逆向推导),都能够把试题拿下。”
针对计算、写字慢的同学。在短时间内可以通过大量的计算推导来提高,多思考式子之间的转换与关联,多观察同样、不同的字母之间所代表的含义以及转换关系。至于写字速度慢,先弄清楚自己为什么写得慢,然后逐步加快即可。阅读慢或者记不住的同学,平时多朗诵,多读适中篇幅的一些文章或题目,逐渐加长即可。
对于性格原因导致的做题慢,在平时训练时要一个字一个字地念题目(或默读),在做题的时候强迫自己规范好草稿。不要东一块、西一块地乱写,把草稿当作作业来写。如果好动的同学平时做题的时候可以强迫自己不断继续坚持做下去,短期内养成“稳当”的特点即可。
“总之,高三学生要通过做题来养成正确的考试习惯。”正确的做题习惯是一看二想三动四回顾。先看清题意,再思考题干和题肢之间的关联,然后才动手,最后总结。当你习惯了这些步骤后,就能快速答题了。
高考数学答题技巧篇十一
选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。选择题的解题思想,渊源于选择题与常规题的联系和区别。它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。
选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。经过我的培训,很多的学生的选择题甚至1分都不丢。
下面是一些实例:
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代答案入题干验证法):
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
总结:高考中的选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。例如:估值选择法、特值检验法、顺推破解法、数形结合法、特征分析法、逆推验证法等都是常用的解法.解题时还应特别注意:选择题的四个选择支中有且仅有一个是正确的,因而在求解时对照选择支就显得非常重要,它是快速选择、正确作答的基本前提。
高考数学答题技巧篇十二
解选择题,一要会想,二要少算。数学选择题,都是四选一,其中必有一项正确,若不关注选项,小题大做,把选择题做成了解答题,会事倍而功半。这就是说,解选择题的基本原则是:“小题不用大做”。
解题的基本策略是:要充分利用题设和选择支两方面所提供的信息作出判断。一般来说,能定性判定的,就不再使用复杂的定量计算;能使用特殊值判定的,就不必采用常规解法;能使用间接解法的,就不必采用直接解法;对于明显可以否定的选择支,应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选择最优解法等等。
数学选择题的求解,一般有两种思路,一是从题干出发考虑,探求结果;二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件.由于选择提供了备选答案,又不要求写出解题过程,因此出现了一些特有的解法,在选择题求解中很适用,下面介绍几种常用方法。
就是从题设条件出发,通过正确的运算或推理,直接求得结论,再与选择支对照,从而作出判断选择的一种方法。
使用筛选法的前提是“答案唯一”,具体做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论。
高考数学答题技巧篇十三
压轴题主要出在函数,解几,数列三部分内容,一般有三小题。记住:第一小题是容易题!争取做对!第二小题是中难题,争取拿分!第三小题是整张试卷中最难的题目!也争取拿分!
其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
其实高考的时候怎么可能分心呢?这里的分心,不是指你做题目的时候想着考好去哪里玩。高考时,你是不可能这么想的。你可以回顾高三以往考试,问一下自己:在做最后一道题目的时候,你有没有想“最后一道题目难不难?不知道能不能做出来”“我要不要赶快看看最后一题,做不出就去检查前面题目”“前面不知道做的怎样,会不会粗心错”……这就是影响你解题的“分心”,这些就使你不专心。
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
步骤(1)将题目条件推导出“新条件”,
步骤(2)将题目结论推导到“新结论”,步骤(1)就是不要理会题目中你不理解的部分,只要你根据题目条件把能做的先做出来,能推导的先推导出来,从而得到“新条件”。步骤(2)就是想要得到题目的结论,我需要先得到什么结论,这就是所谓的“新结论”。然后在“新条件”与“新结论”之间再寻找关系。一道难题,难就难在题目条件与结论的关系难以建立,而你自己推出的“新条件”与“新结论”之间的关系往往比原题更容易建立,这也意味着解出题目的可能性也就越大!
最高境界就是任何一道题目,在你心中没有难易之分,心中只有根据题目条件推出新条件,一直推到最终的结论。解题心态也应当是宠辱不惊,不以题目易而喜,不以题目难而悲,平常心解题。
最后还有一点要提醒的是,虽然我们认为最后一题有相当分值的易得分部分,但是毕竟已是整场考试的最后阶段,强弩之末势不能穿鲁缟,疲劳不可避免,因此所有同学在做最后一题时,都要格外小心谨慎,避免易得分部分因为疲劳出错,导致失分的遗憾结果出现。
高考数学压轴题的答题技巧就为大家介绍到这里,希望对你有所帮助。