总结是对过去的一个总结和归纳,是我们自我成长的一个必要步骤。医疗工作写总结时需要注意哪些要点?有没有一些成功的案例可供参考?下面是一些优秀总结的特点和规范,希望对您的写作有所帮助。
数轴篇一
3.使学生初步理解数形结合的思想方法.
教学重点和难点。
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.
难点:正确理解有理数与数轴上点的对应关系.
课堂教学过程设计。
一、从学生原有认知结构提出问题。
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.
二、讲授新课。
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)。
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.
三、运用举例变式练习。
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习。
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
四、小结。
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
五、作业。
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
课堂教学设计说明。
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.
数轴篇二
首先让学生回顾有理数,同时借助多媒体让学生举手回答,使学生思维活跃迅速进入上课状态。
在进入新课时,又借助实物让学生对数轴有一个感性的认识,引导学生回答在实际生活中类似于温度计的例子,让学生注意力集中,思维活跃。
教师对教材中的例1进行灵活性的解释,学生通过实际生活中的具体模型归纳他们所具有的共同特点,从而得出数轴的定义,教学中应在学生的归纳处突出数轴的三要素,学生踊跃发言,共同不漏,兴趣提升,课堂气氛活跃。
在这节课的教学过程中,学生的思维始终保持高度的活跃的性,出现了很多的闪光点,对我的启发也很大。
在教学中应把握教材的精神,创造性的利用教材,在设计安排和组织教学过程的每一个环节都应当很意识的体现探索的内容和方法,避免教学内容的过分抽象和形成化,使学生通过直观感受去理解和把握体验数学学习的乐趣。积累数学活动经验,体现数学学习的乐趣,积累数学活动经验,体验数学思维的意义,让学生在中学中逐步形成创新意识。
本节课中,相信学生,并为学生提供充分展示自己的机会,教学活动的设计力求使学生多动手,多思考,多反思,充分发挥学生的主题作用,创设实际情景,情境,给学生足够的时间和空间进行充分的探索和交流,通过动手实践,自主探索,合作交流的学习方式进行有效的学习。
本节课注意改进的方面是课堂最后的小结中,教师提出数轴上的点与有理数并非一一对应的关系,将学生的思想引入更深一层做的不好,在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问,与其对困难学生的帮助等,使小组合作学习更具时效性。
数轴篇三
首先谈谈我对教材的理解,《数轴》是人教版初中数学七年级上册第一章的内容,本节课的内容是数轴的概念概念,三要素,和用数轴表示数。有理数已经在上一节已经进行了讲解,并且之前也有生活中的温度计的常识性经验,对于本节课的知识点有了很好的铺垫作用。数轴是一个重要概念,后续的直角坐标系也是以数轴为基础的。它是学生第一次学习正式接触数形结合思想,在整个数学体系中有着不可或缺的作用。
二、说学情。
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
了解数轴的概念,能用数轴上的点准确地表示有理数。
(二)过程与方法。
通过观察与实际操作,体会有理数与数轴上的点的对应关系,体会数形结合的思想。
(三)情感态度价值观。
在数与形结合的过程中,体会数学学习的乐趣。
四、说教学重难点。
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:用数轴上的点表示有理数。数形结合的思想方法学生首次正式接触,所以本节课的教学难点是:数形结合的思想方法。
五、说教法和学法。
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程。
下面我将重点谈谈我对教学过程的设计。
(一)新课导入。
首先是导入环节,通过对生活中常见的温度计的提问,恰当的引出数轴这一课题。
用生活实例导入贴近学生的生活,有助于后续的学习数轴三要素,并且培养学生将生活实际与数学相联系。
(二)新知探索。
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
在这一个环节,我会通过课件呈现一个情境:然后让学生们将杨树柳树站牌表示出来。在学生都将图画好以后,我会提出以下问题:问题1。马路可以用什么几何图形表示?问题2。你认为站牌起什么作用?问题3。你是怎么确定问题中各物体的位置的?并请一到两位同学进行解答。由此帮助学生总结画图时可以用直线、点、方向、距离等几何符号表示实际问题,实现数学问题的第一次数学抽象。
接下来进行引导,和学生一起采用正负数、几何符号、方向等知识将树、电线杆与汽车站牌的相对位置关系画出来。并且将0表示基准点、数的符号的实际意义是方向等知识进行强调。随后,我再通过课件出示温度计的图片,让学生对比着树、电线杆与汽车站牌的相对位置关系分析温度计的结构。讲解0℃是温度的基准点,冰水混合物的温度规定为0℃。以此帮助学生提前感受原点、单位长度、方向这三要素。
接下来明确数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,并且提出三要素。询问问大家对三要素的理解。以此来帮助学生深刻认识到数轴个概念。
学生能够用数轴上的点表示有理数,采取类比的思想得出数轴上的点与有理数对应。
至此本节课的主要教学内容已经完成,做到了突出重点,突破难点。
在开始的选点的过程中我选择生活实例中的位置关系,这样为学生将数学应用于生活奠定基础,培养将数学应用于生活的能力。
(三)课堂练习。
接下来是巩固提高环节。
归纳题,让学生更加明确数轴上点的意义;基础练习题巩固本节课所学习的知识点。
这样的问题的设置,让学生对知识进一步巩固,并且能够熟练掌握。
(四)小结作业。
在课程的最后我会提问:今天有什么收获?
引导学生回顾:什么是数轴,数轴的三要素,以及数轴上的点的与有理数对应?
本节课的课后作业我设计为:
课后习题第二题和思考到原点距离相等的点有何特点?
这样的设计能让学生理解本节课的核心,感受数形结合思想,并且为下节课做铺垫。
数轴篇四
首先谈谈我对教材的理解,《数轴》是人教版初中数学七年级上册第一章1。2。2的内容,本节课的内容是数轴的概念概念,三要素,和用数轴表示数。有理数已经在上一节已经进行了讲解,并且之前也有生活中的温度计的常识性经验,对于本节课的知识点有了很好的铺垫作用。数轴是一个重要概念,后续的直角坐标系也是以数轴为基础的。它是学生第一次学习正式接触数形结合思想,在整个数学体系中有着不可或缺的作用。
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
了解数轴的概念,能用数轴上的点准确地表示有理数。
(二)过程与方法。
通过观察与实际操作,体会有理数与数轴上的点的对应关系,体会数形结合的思想。
(三)情感态度价值观。
在数与形结合的过程中,体会数学学习的乐趣。
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:用数轴上的点表示有理数。数形结合的思想方法学生首次正式接触,所以本节课的教学难点是:数形结合的思想方法。
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
下面我将重点谈谈我对教学过程的设计。
(一)新课导入。
首先是导入环节,通过对生活中常见的温度计的提问,恰当的引出数轴这一课题。
用生活实例导入贴近学生的生活,有助于后续的学习数轴三要素,并且培养学生将生活实际与数学相联系。
(二)新知探索。
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
在这一个环节,我会通过课件呈现一个情境:然后让学生们将杨树柳树站牌表示出来。在学生都将图画好以后,我会提出以下问题:问题1。马路可以用什么几何图形表示?问题2。你认为站牌起什么作用?问题3。你是怎么确定问题中各物体的位置的?并请一到两位同学进行解答。由此帮助学生总结画图时可以用直线、点、方向、距离等几何符号表示实际问题,实现数学问题的第一次数学抽象。
接下来进行引导,和学生一起采用正负数、几何符号、方向等知识将树、电线杆与汽车站牌的相对位置关系画出来。并且将0表示基准点、数的符号的实际意义是方向等知识进行强调。随后,我再通过课件出示温度计的图片,让学生对比着树、电线杆与汽车站牌的相对位置关系分析温度计的结构。讲解0℃是温度的基准点,冰水混合物的温度规定为0℃。以此帮助学生提前感受原点、单位长度、方向这三要素。
接下来明确数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,并且提出三要素。询问问大家对三要素的理解。以此来帮助学生深刻认识到数轴个概念。
数轴篇五
我说课的内容是人教版七年级教科书第一册第二章第二节“数轴”的第一课时内容。下面我将从教材分析、教学目标、教法与学法、教学过程、板书设计、效果预测等几个方面对本节课的教学设计进行说明。
一、教材分析:(一)教材的地位及作用。
数轴是人教版七年级上册第一章第二节有理数的重点内容之一,本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一实例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。
(二)学情分析。
1.从心理特征来说,七年级学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力尽可能集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
在教学中不仅要使学生“知其然”,而且要使学生“知其所以然”,我们在以学生既为主体又为客体的原则下,展现获取知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重要。基于本节课的特点以及学生的理解能力,为使课堂生动、有趣、高效,我将观察、思考与讨论贯穿于整个教学环节之中,主要以参与式、探究式的教学方法为主,充分利用多媒体教学技术生动形象展示出数轴的相关知识,从而引导学生自主探索,学会数形结合的数学思想。
(二)学法。
为使学生主动学习,本节课采用学生小组合作、讨论交流、观察发现、师生互动的学习方式。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,进而培养学生良好的学习习惯。
四、教学过程。
为充分发挥学生的主体性和教师的主导作用,教学过程中我设计了七个教学环节:
为正方向,由于我们只能画出直线的一部分,因此标上箭头指明正方向。)。
1、-。
2、-3等依次类推。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)。
设计意图:画完数轴后教师引导学生讨论:怎样用数学语言来描述数轴?(通过教师的亲切的语言启发学生,以培养师生间的默契。)通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。
强化概念深入理解。
1.课件显示一组图形(a、b、c三个图形从数轴的三要素出发,d和f是学生可能出现的错误,在这里给出前馈,避免学生在画数轴时出现类似的错误。),让学生观察并讨论:下列图形哪些是数轴,哪些不是,为什么?这个问题将给学生足够的时间去观察、思考,然后展开充分的讨论,教师参与到学生的讨论中去接触学生,认识学生,并关注学生。
当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。
分层练习形成能力。
1.数轴上的点p与表示有理数3的点a的距离是2,(1)试确定点p表示的有理数。
(2)现将a向右移动2个单位到b点,则点b表示的有理数是多少?
(3)再由b点向左移动9个单位到c点,则c点表示的有理数是多少?
设计意图:先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
归纳小结强化思想。
根据学生的特点,师生共同小结:
1.数轴的概念、数轴的三要素。2.用数轴上的点表示有理数的方法。
3.所有的有理数都可以用数轴上的点来表示。
让学生小组讨论:数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?教师强调:一个有理数,只对应数轴上的一个点。
布置作业引导预习。
结合学生的能力层次,为面向全体学生,安排如下:1.在数轴上表示下列各数:
3
正方向。
数轴篇六
今天我说课的题目是人教版数学七年级上册第一章第2节《数轴》。下面,我将从背景分析、教学目标设计、、课堂结构和教学媒体设计、教学过程设计及教学评价设计等几个方面对本课的设计进行说明。
一.背景分析。
1.教材的地位及作用。
“数轴”是人教版七年级数学上册第一章第二节“有理数”的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
2.教学重点、难点的分析。
教学的重点:1)正确理解数轴的概念;2)正确掌握数轴的画法和用数轴上的点表示有理数。
教学的难点:正确理解有理数与数轴上点的对应关系,体会数形结合的数学思想。
3.教材的处理。
1)通过观察温度计及师生互动表示课本第10页中的问题,使学生明白数与形的对应,初步认识数形结合的美妙之处。
2)通过讲解数轴的概念,概括出数轴三要素,指导学生正确地画出数轴。
3)通过练习,使学生准确地掌握数轴的概念,并会用数轴表示有理数,进一步体会数形结合。
4)通过课本第11页的归纳,使学生深化对数轴概念的理解。
二、教学目标设计。
1.知识技能。
2.数学思考。
1)通过观察与思考,建立数轴的概念。
2)通过对数轴的学习,初步体会对应的思想、数形结合的思想。
3.解决问题。
数轴篇七
一、教材分析:
本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。
二、学习任务分析;
1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。
2、能将有理数用数轴上的点来表示。
三、目标分析:
1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。
2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。
3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。
4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学。
四、教法选择。
创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。
本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。
概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的“听数学”为“做数学”。
数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。
五、教学重难点的确定和突破。
1、正确画出数轴是本节教学的重点。
首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。
2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。
通过例题要求学生动手操作画出数轴并描述点。
说明:(1),可能有不少学生会忘记正方向。
(2),原点左边的数的表识会发生标反的错误。
(3),数轴上的正方向,同时也表示由小到大的方向。
(4),单位长度的截取可以是任意长度,不是唯一的。
(5),数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。
3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:
数轴篇八
学习目标:
1.会用数轴上的点表示有理数。
2.借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小。
学习规律:
经历从实际中抽出数学模型,从数形结合两个侧面理解问题,并能选择处理数学信息,作出大胆猜测。
练习1:
1.下列图形是数轴的是( )。
数轴篇九
负数的教学,它是小学阶段新增的内容,它把小学阶段数的教学从自然数、小数、分数范围扩大到了有理数范围。学习的面就广了,学生考虑问题就要全面、周到。在教学第一节课认识负数时,因为内容简单易懂,学生学得比较轻松,愉快,很快知道正数和负数是表示两个相反的量,0既不是正数也不是负数。而第二课时教学正负数比较大小时,是先以大树为起点,一个人往东走,一个人往西走,如何在一条直线上表示出他们运动后的情况,引出数轴,使学生知道在数轴上,表示出正数、负数和0,然后借助数轴来比较数的大小。在教学的我采用了一下几个步骤进行教学的,现将每一步的教学预设以及教学生成作如下陈述。
一、亲身经历,将生活事例抽象成数学模型。
首先,出示教材例3,小红和小明从大树出发,一个向东走了2米,记作+2米,另一个同学向西走了4米,记作-4米。
你能将他们运动后的位置用一幅图表示出来吗?这一探究过程是一个有理有序的活动,所以教师必须加以辅导,首先我启发学生思考,用什么来表示这一段路?(直线),然后我们又该确定什么呢?(大树的位置),师:大树的位置是两个同学出发前共同所在的位置,我们把它称作原点,那么确定原点以后,你认为那边的方向应该表示“东”,也就是正方向了?如何表示?(箭头);小明向东行走2千米,小红向西行走4米,又怎么表示呢?(小红在0的右边2格,小东在0的左边4格)师:每一格的长度应怎样呢?你觉得每一格要画多长呢?引导学生理解每一格的长度要相等,画多长要根据实际情况确定。
师:这一格我们把它叫做一个单位,每一个单位的长度一样。
(评:通过这一过程的学习,学生不仅明白了画数轴的方法和步骤,也明白了为什么要这么画?)。
二、画龙点睛,教师揭示数轴的概念。
学生初次接触,一个陌生的概念,一定要让学生印象深刻,并尽量全面细致得明白概念的内涵。因此在这里,教师有必要在此郑重其事的揭示概念。通过前面的动手操作,学生亲身经历了将生活中的事例抽象成数学模型的过程,教师揭示:像这样规定了原点、方向和单位长度的一条直线就叫做数轴。并用板书加以梳理和强化。
(反思:很遗憾我在教学之前没有想到预设这一环节,这是夷陵区教研室的杨万英老师听了我的课后,提出的一个建设性的意见,我觉得专家的见地确实很专业,谢谢专家一针见血地指出了我教学中的不足。)。
三、展开想象,学生在头脑中将数形结合。
在揭示了数轴的概念以后,观察数轴,说一说向东行1米、2米、…..的位置在原点的什么方向?向西呢?闭上眼睛想一想,小东向东走了5米在什么位置?小会向西走了10米,在什么位置?再观察+1.5米和-1.5米的位置你发现了什么?通过教师的指引学生跟着老师在数轴上来回的“走”了几趟以后,在学生的头脑中学生就会把数轴上的点与正数、负数对应起来。
(评:这一环节教师引导学生在数轴上来回的“走”,这些走的过程就是学生把数轴上的数和数轴的形结合在一起的过程,闭上眼睛是引导学生由直观形象思维过渡到抽象逻辑思维,由此培养学生的想象能力和空间观念。)。
四、观察发现,积累解决问题的经验。
(评:这一环节学生借助上节课学习的有关负数的知识,通过温度高低的比较,形成比较数的大小的直接经验,经验是学生学习方法和能力的体现。)。
五、思考解题策略,渗透学习方法的教学。
当学生对正数和负数的大小有了初步印象以后,下面是巩固练习比较数的大小,在比较之前,先让学生想一想,“你采用什么方法进行比较?”在此启发学生用多种方法解决问题,比如:可以将要比较的两个数在数轴上表示出来,看哪一个数在左边,那个数在右边?左边的数始终比右边的数小;也可以根据我们自己总结的经验来判断,正数大于负数,0大于负数,两个负数比较,负号右边的数越大,这个负数反而小。学生说起来简单做起来难,如—1/3与—1/4这样的分数比较大小,很容易出错。因此先让学生凭借数轴来比较负数的大小,然后找出规律,总结出比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。
(评:教师要授人以渔,而不能授人以鱼,因此,学习方法的教学应该每一堂课中进行渗透。)。
回顾这节课的教学,我觉得自己在课堂预设方面,注意考虑到了这样几点:一是力求让学生亲生经历知识的探究过程,形成自己的直接经验;二是遵循思维发展的规律,从直观思维逐渐过渡到抽象思维,然后又在实践中综合应用所学知识,提高思维能力;三是考虑到学生已有的知识基础,以及学生可能出现的问题。课堂预设是一个方面,还要在课堂实施的过程中实时调控,注意课堂生成,这样才能不断提高自己的课堂教学水平。
数轴篇十
2.会用数轴上的点表示有理数,能说出数轴上(表示有理数)的点所表示的数.
3.会利用数轴比较有理数的大小.
4.初步感受“数形结合”的思想方法.
【教学过程设计建议(第一课时)】。
1.情境创设。
观察温度计或刻度尺上刻度的排列顺序,直观地将小学里用直线上的点表示数的方法推广到用来表示有理数,正确建立数轴的概念.除温度计和刻度尺外,杆秤、天平等都是较好的数学模型.
2.探索活动。
(1)观察温度计或刻度尺上的刻度,根据课本上两个卡通人的提示,引导学生讨论:直线上的点能表示负数(如一10,一15)吗?通过在温度计上找一10℃、一15℃的位置的活动,感受可以用直线上的点表示负数.
数轴的位置通常是水平的,但也可以是任意位置的,要发现并及时展示那些画法正确但放置方向不同、单位长度不同的数轴.要特别注意指导学生正确标注负数.
可以让学生对照“做一做”的几个步骤共同评价 “板演”作业,形成对数轴的正确认识.
3.例题教学。
例2是让学生学会在数轴上表示有理数,教师还可以再增加一些练习,然后引导学生评价卡通人的结论.需要注意的是,不要提及“数轴上任何一点是否都表示一个有理数”之类的话题,因为虽然任何一个有理数在数轴上都有惟一的点与它对应,但有理数与数轴上的点并不一一对应,而这是学生当前无法认识和回答的.
可以根据学生的实际情况,适当增加在数轴上表示分数的练习.
【教学过程设计建议(第二课时)】。
1.探索活动。
借助生活经验(温度的高低),引导学生探索:
边的点所表示的数”.
“议一议”中的第2个问题,应组织学生认真操作,为得出上述结论增加感性认识.
对于两个负数比较大小,学生比较陌生,教学中还可以采用以下方法:
在数轴上,表示一3的点a在原点左边3个单位长度,表示一2的点b在原点左边2个单位长度,不难看出点a在点b的左边,即得一3一2.
数轴上的点从左到右的顺序,就是它所表示的数从小到大的顺序.这种规定与日常生活结论是一致的.
2.例题教学。
例3较简单,直接应用结论的第二部分进行判断;例4给出了利用数轴比较两个负数大小的规范表述.
3.小结。
“数形结合”是化抽象为直观、化难为易的一种常用的数学方法.华罗庚先生指出:“数缺形时少直观,形少数时难入微.”小结时,除要讲清数轴本身的意义外,还应通过有理数的大小比较,让学生感受到这一方法带来的便利.
下一篇:华师大版七上2.2数轴(含答案)。
数轴篇十一
首先谈谈我对教材的理解,《数轴》是人教版初中数学七年级上册第一章的内容,本节课的内容是数轴的概念概念,三要素,和用数轴表示数。有理数已经在上一节已经进行了讲解,并且之前也有生活中的温度计的常识性经验,对于本节课的知识点有了很好的铺垫作用。数轴是一个重要概念,后续的直角坐标系也是以数轴为基础的。它是学生第一次学习正式接触数形结合思想,在整个数学体系中有着不可或缺的作用。
二、说学情。
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能。
了解数轴的概念,能用数轴上的点准确地表示有理数。
(二)过程与方法。
通过观察与实际操作,体会有理数与数轴上的点的对应关系,体会数形结合的思想。
(三)情感态度价值观。
在数与形结合的过程中,体会数学学习的乐趣。
四、说教学重难点。
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:用数轴上的点表示有理数。数形结合的思想方法学生首次正式接触,所以本节课的教学难点是:数形结合的思想方法。
五、说教法和学法。
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程。
下面我将重点谈谈我对教学过程的设计。
(一)新课导入。
首先是导入环节,通过对生活中常见的温度计的提问,恰当的引出数轴这一课题。
用生活实例导入贴近学生的生活,有助于后续的学习数轴三要素,并且培养学生将生活实际与数学相联系。
(二)新知探索。
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
在这一个环节,我会通过课件呈现一个情境:然后让学生们将杨树柳树站牌表示出来。在学生都将图画好以后,我会提出以下问题:问题1。马路可以用什么几何图形表示?问题2。你认为站牌起什么作用?问题3。你是怎么确定问题中各物体的位置的?并请一到两位同学进行解答。由此帮助学生总结画图时可以用直线、点、方向、距离等几何符号表示实际问题,实现数学问题的第一次数学抽象。
接下来进行引导,和学生一起采用正负数、几何符号、方向等知识将树、电线杆与汽车站牌的相对位置关系画出来。并且将0表示基准点、数的符号的实际意义是方向等知识进行强调。随后,我再通过课件出示温度计的图片,让学生对比着树、电线杆与汽车站牌的相对位置关系分析温度计的结构。讲解0℃是温度的基准点,冰水混合物的温度规定为0℃。以此帮助学生提前感受原点、单位长度、方向这三要素。
接下来明确数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,并且提出三要素。询问问大家对三要素的理解。以此来帮助学生深刻认识到数轴个概念。
学生能够用数轴上的点表示有理数,采取类比的思想得出数轴上的点与有理数对应。
至此本节课的主要教学内容已经完成,做到了突出重点,突破难点。
在开始的选点的过程中我选择生活实例中的位置关系,这样为学生将数学应用于生活奠定基础,培养将数学应用于生活的能力。
(三)课堂练习。
接下来是巩固提高环节。
归纳题,让学生更加明确数轴上点的意义;基础练习题巩固本节课所学习的知识点。
这样的问题的设置,让学生对知识进一步巩固,并且能够熟练掌握。
(四)小结作业。
在课程的最后我会提问:今天有什么收获?
引导学生回顾:什么是数轴,数轴的三要素,以及数轴上的点的与有理数对应?
本节课的课后作业我设计为:
课后习题第二题和思考到原点距离相等的点有何特点?
这样的设计能让学生理解本节课的核心,感受数形结合思想,并且为下节课做铺垫。
文档为doc格式。
数轴篇十二
1.在数轴上,点a表示数-2,点b到点a的距离为3,则点b表示的数是.
2.画出数轴,并在数轴上表示下列各数:+2,-3,-1.5,4.
3.请在下面的数轴上注明表示数的点.
5.附加题:在数轴上,一只蚂蚁从原点o出发,它先向右爬了4个单位长度到达点a,再向右爬了2个单位长度到达点b,然后又向左爬了10个单位长度到达点c.
(1)写出a,b,c三点表示的.数;。