当前位置:网站首页 >> 文档 >> 2023年长沙理工大学考研数学分析 长沙理工大学601真题通用

2023年长沙理工大学考研数学分析 长沙理工大学601真题通用

格式:DOC 上传日期:2024-03-22 22:48:10
2023年长沙理工大学考研数学分析 长沙理工大学601真题通用
    小编:admin

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

长沙理工大学考研数学分析 长沙理工大学601真题篇一

函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数性质及其图形。

数列极限与函数极限的定义以及它们的性质,无穷小和无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限。

函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。

2、一元函数微分学

导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数和微分的四则运算,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数的概念和求法,一阶微分形式的不变性,微分在近似计算中的应用,洛尔(rolle)定理,拉格朗日(lagrange)中值定理,柯西(cauchy)中值定理,泰勒(taylor)定理,洛必达(l’hospital)法则,函数的极值及其求法,函数单调性,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数最大值和最小值的求法及简单应用,弧微分,曲率的概念,曲率半径。

3、一元函数积分学

原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的概念和基本性质,定积分中值定理,变上限定积分定义的函数及其导数,牛顿-莱布尼茨(newton-leibniz)公式,不定积分和定积分的换元积、分法部积分法,有理函数、三角函数的有理式和简单无理函数的积分,广义积分的概念和计算定积分的近似计算法,定积分的应用。

4、矢量代数和空间解析几何

矢量的概念,矢量的线性运算,矢量的数量积和矢量积的概念及运算,矢量的混合积,两矢量垂直、平行的条件,两矢量的夹角,矢量的坐标表达式及其运算,单位矢量、方向数与方向余弦,曲面方程和空间曲线方程的概念,平面方程、直线方程,平面与平面、平面与直线、直线与直线的平行、垂直的条件和夹角,点到平面和点到直线的距离,球面,母线平行于坐标轴的柱面,旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程。

5、多元函数微分学

多元函数的概念,二元函数的几何意义,二元函数的极限和连续的概念,有界闭区域上的多元连续函数的性质,多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分在近似计算中的应用,多元复合函数、隐函数的求导法,高阶偏导数,方向导数和梯度的概念及其计算,空间曲线的切线和法平面,曲面的切平面和法线, 二元函数的二阶泰勒公式,多元函数极值和条件极值的概念,多元函数极值的必要条件,二元函数极值的充分条件,极值的求法,拉格朗日乘数法,多元函数的最大值、最小值及其简单应用。

6、多元函数积分学

二重积分、三重积分的概念及性质,二重积分与三重积分的计算和应用,两类曲线积分的概念、性质及计算,两类曲线积分的关系,格林(green)公式,平面曲线积分与路径无关的条件,已知全微分求原函数,两类曲面积分的概念、性质及计算,两类曲面积分的关系,高斯(gauss)公式,斯托克斯(stokes)公式,散度、旋度的概念及计算,曲线积分和曲面积分的应用。

7、无穷级数

8、常微分方程

常微分方程的概念,微分方程的解、阶、通解、初始条件和特解,变量可分离的方程,齐次方程,一阶线性方程,伯努利(bernoulli)方程,全微分方程,可用简单的变量代换求解的某些微分方程,可降价高阶微分方程,线性微分方程解的性质及解的结构定理,二阶常系数齐次线性微分方程,高于二阶的某些常系数齐次线性微分方程,简单的二阶常系数非齐次线性微分方程,欧拉(euler)方程,包含两个未知函数的一阶常系数线性微分方程组,微分方程的幂级数解法,微分方程(或方程组)的简单应用问题。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:2.99元 10元
微信扫码支付
b.包月复制
付费后30天内不限量复制
特价:6.66元 10元
微信扫码支付
联系客服