在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
两位数加减两位数的口算教学反思 两位数乘两位数的口算教学反思篇一
一、创设情境,充分调动学生学习的积极性
在教学时,创设适合的情境对于激发学生的学习兴趣是十分重要的,好的情境能让学生尽快地融入到教学中来。因此,课堂上由买玩具引出两位数加两位数的口算,这样一方面激发学生兴趣,另一方面让学生感知口算在日常生活中的重要。
二、注重交流,发挥学生的集体智慧
交流是学生的天性,学生总愿意把自己知道的与别人一起分享。根据这一特点,在课堂上我要求学生说说自己口算的过程,充分发表自己的意见,同时培养学生的语言表达能力。
三、口算方法多样化
(1)44+25
①40+20=60,4+5=9,60+9=69
②先算44+20,再算64+5=69
③先算44+5,再算49+20=69
④先算25+40,再算65+4=69
(2)25+38
①20+30=50,5+8=13,50+13=63注意:个位满十要向十位进一
②先算25+30,再算55+8=63
③25+8=33,33+30=63
允许算法多样化,体现数学的个性化,让不同的学生学习不同的口算方法
四、练习形式多样化
多样的练习形式,使学生在掌握和巩固计算技能的同时,进一步感受数学与生活的密切联系,享受用数学解决实际问题带来的乐趣。
两位数加减两位数的口算教学反思 两位数乘两位数的口算教学反思篇二
一、创设情境,充分调动学生学习的积极性
在教学时,创设适合的情境对于激发学生的学习兴趣是十分重要的,好的情境能让学生尽快地融入到教学中来。因此,我创设两位小朋友买玩具的情景,既让学生感受到了数学与生活的联系,又激发了学生的兴趣。
二、注重交流,发挥学生的集体智慧
交流是学生的天性,学生总愿意把自己知道的与别人一起分享。在教学时,我让学生先自己想一想,然后小组交流,说说自己的口算方法。取长补短,发挥学生集体的智慧,在相互交流中找出适合自己的方法。
三、巩固练习,提高学生的口算能力
本课练习的设计紧扣重点、难点,在探索两位数加两位数的口算方法后,又设计了一系列的巩固练习,活跃了学生的思维,巩固了口算方法,深入挖掘教材自身资源,创造性地使用教材。在下面的练习中,先通过对比练习题分清进位与不进位两种情况,提高口算正确率,打开了学生的思维,再运用所学知识去解决一些生活实际问题,运用数学。
不足与改进:
针对本节课的教学设计,并结合教学时的实际教学情况,我从以下几个方面进行了反思:
一、本节课我对学生回答问题时的评价不太到位,应多给一些鼓励性的语言,激发学生学习的积极性。
二、学生说出两位数加两位数的口算方法后,说的不到位的应教师给予补充,使学生掌握更多的口算方法。
三、学生不善于利用估算来对口算结果进行检验,口算两位数加两位数的错误主要在口算进位加法时,会将个位向十位的进一忘记加,是学生出现的主要错误,如果引导学生将估计与精算结合起来,将会有效地提高口算的正确率。而且我发现学生在解决实际问题时,重视精算,忽略估算。学生总是习惯以精算结果去解题。只有当题目提出明确要求要“估一估”时,学生才会以估算的方法去尝试解决问题。不难看出,学生欠缺的是估算意识,一种能根据实际情境灵活选择算法的能力。
两位数加减两位数的口算教学反思 两位数乘两位数的口算教学反思篇三
大文斗范文网后面为你推荐更多《两位数加两位数的口算》教学反思!
一、吃透教材,了解学情的基础上提炼自学重点。
我在认真研读了教材、教师用书和课标后,提炼出本节课的自学重点是:探索两位数加两位数的口算方法,用自己喜欢的方法正确的口算。我一直觉得自学重点的提炼不同于教学目标和重难点的概括,因为自学重点是让学生看的,并让学生围绕自学重点进行自学的,所以一定要贴切学生的语言,让学生明白易懂,放在心上,整节课都能紧紧围绕自学重点,绝不能照搬教学目标重点知识技能目标或教学重难点。其次一定要紧紧围绕本节课的重难点提出一个自学重点,绝不能贪多求全。出示自学重点后,让学生各自轻声读两遍,重点就是鼓励学生去探索不同的口算方法,然后帮助学生选出自己喜欢的方法进行口算。从五个环节来看,本节课大多数学生都能紧紧围绕自学重点来开展自学、讨论和交流的。
二、掌握自学方法,紧紧围绕自学重点进行个人自学。
“引导自学”型课堂最关键的环节就是个人自学,只有有效的个人自学,才能进行小组讨论和全班交流,个人自学的效果直接影响着一节课的实效性。如何才能做到有效的自学?首先就要掌握正确的自学方法,我们班从一年级开始训练自学方法,我概括出六个字:看、圈、想、做、问、查。在学生没有掌握灵活的自学方法之前,这些机械的训练是十分必要的。本节课我也是要求学生围绕这六个字进行个人自学,并且强调围绕教材39页上面的两个问题(①你是怎么口算的?②比较两题计算时,有什么相同,有什么不同?)进行认真思考,并把自己的想法表达出来。在巡视的过程中,我发现很多学生口算两道题时,使用的方法都是受到两位数加两位数笔算的思维定式影响,个位加个位,十位加十位。对于不同层次的学生我的要求也不同,每组的1号一般都是成绩较差些的学生,他们能用这一种方法正确口算,对于他们来说就已经完成自学任务了,对于2、3号,成绩中等或偏上的学生,我就要鼓励他们再想出一种口算方法,对于4号小组长也就是每组中成绩优秀的学生,我的要求更高,鼓励他们想出尽可能多的口算方法。在思考第二个问题时,很多学生没有关注计算时的相同和不同,而是简单的看到两道口算题的第一个加数都是 44。我适时给予点拨,指出比较两道题在计算过程中的相同点和不同点,不是让我们比较这两道算式题。可是我发现经我这样的点拨后,不少学生都不知道如何去思考。我只看到李善宇、罗世祺等几个同学写出“算法相同”,可以看出这几个学生已经明白了,就是表述上不准确,应该是同一种口算方法的算理是相同的,对于三年级的学生很难有这样准确的概括能力。还有少数几个同学跟我的ppt呈现的一模一样,我估计是在我上课之前用曙光小学的班班通,不太熟悉,所以就演示了一遍,细心观察的同学就看到了我还没呈现的ppt内容了。纵观这一环节,每个学生都紧紧围绕自学重点认真自学,探索口算方法,虽然不同层次的学生收获是不一样的,后进生收获的是一种方法,成绩优异的探索到好几种口算方法,但是不同的学生在这一环节都能通过自己的努力获取新知识,这正是“引导自学”型课堂最大的魅力。对于个人自学环节,我的任务就是不断的巡视,关注到各个层次的学生的个人自学情况,并进行适时点拨,可惜我的点拨不够明确,没能给学生更好的指导。
三、加强常规训练,开展有序有效的自学交流。
在训练小组讨论常规上,虽然我已经花费了很多精力和时间,基本能做到有序讨论,至于有效,还需要努力。本节课在小组讨论中,我发现在讨论口算方法时,每组基本都有一两位学生只使用了一种口算方法,而另外的口算方法都是小组长直接告诉的,没有经历探索的过程。全班交流我还是采取了一组同学进行集体汇报,其他小组给予补充。我这么做目的有两个:其一,学生可以得到充分的锻炼,尤其是培养学生语言表达能力和组织能力;其二,尽量避免单生提问,传统课堂回潮,因为年轻教师对课堂的驾驭能力是有限的,经常为了能让教学顺利开展,就会加强控制,一个问题接着一个问题。可是本节课的全班交流我选择了最好的一组进行展示,基本上把两道题的口算方法都已经汇报了,只有陆子杰补充了第二题口算方法:44+40=84,84-2=82.其他同学只好做了观众。汇报的小组提出的问题是“用什么方法可以检验我们口算是不是正确的呢?”学生根据以往学习笔算时的经验,提出多种检验方法,比如再算一遍,用减法验算还有估算。接着让其他小组提问题,韦皓小组提出的问题是“哪一种方法能又快又准确的口算?”罗世祺立即就说:“用你喜欢的方法就可以”我为了能在规定的时间内完成教学任务,没有抓住学生在课堂上的精彩生成,就结束了全班交流。
四、紧扣重难点,教师做少而精的点拨。
本节课,我围绕重难点设计了两个点拨:点拨一,比较不同的口算方法,找出相同点?就是让学生发现我们都是利用拆数的方法,把一个或两个加数拆分成几十和几,然后转化成两个或三个简单的口算题进行口算,能进行又快又准的口算,向学生渗透“转化”的数学思想;点拨二,我们可以用估算来检验口算的结果是不是正确的。通过这样的点拨,增强学生的估算意识。本节课我是在全班交流后单独进行点拨的`,效果不太好。应该在学生汇报口算方法时,就立即进行点拨,渗透“转化” 数学思想,同时表扬陆子杰同学的方法,也可以用凑数这种方法来口算。汇报小组提出“有什么方法可以检验口算是不是正确的?”有同学补充说:“可以用估算”,我应该立即抓住这样精彩的课堂生成,追问学生“我们该怎么估算?”或“这两道口算题在估算时有什么不同?”这样穿插在全班交流时的点拨,才能引起学生最大的关注,否则在交流后再来点拨,就不够突出,很难引起学生的注意。
五、形式多样,层次不同的巩固练习。
本节课“想想做做”共有七道题,题量较大,形式单一。所以我进行的大胆的尝试,形式上有所突破,我整理了三类题目:基础练习、解决实际问题、拓展练习,前两期是必做题,拓展练习是选做题。内容上我也进行了改变,第一题是连线题,加强学生的估算意识;第二题是先让学生估算,再进行题组对比练习;第三题解决实际问题,第四题拓展练习让学生自己编五道得数是六十多的两位数加两位数算式,还有就是在方框里填合适的数,拓展练习的题目没有确定的答案,鼓励学生分散思维,寻求不同的答案。在巩固自学环节,少数学生能完成所有题目,也有少数学生必做题都没有完成,大多数学生都能基本完成。我点拨了解决实际问题,基础练习题在小组里订正。
通过本节课的教学,让我意识到“引导自学”型课堂值得我去探索,去实践,去反思,只有课堂教学模式的改变,才能还课堂给学生,还学习给学生。课堂教学的精彩不是靠教师来“表演”,而是让学生去演绎。
两位数加减两位数的口算教学反思 两位数乘两位数的口算教学反思篇四
《两位数加减两位口算》是人教版二年级下册第七单元的第一课时,这节课是在学生已经掌握了口算两位数加整十数、一位数以及两位数笔算加减法的基础上学习的。
这节课的知识点比较容易掌握,重点是要学生掌握两位数加减两位数的口算方法。我们知道口算是一种不借助计算工具,只依靠记忆、思维和语言进行计算直接得出结果的计算方法和方式。虽然口算的结果是外显的,但口算的思维过程即是内隐的。也正因为口算过程的内隐性,所以也就有了口算方法的多样性。新课程标准里也提到:“由于学生生活背景和思考角度的不同,所使用的方法必然是多样的,教师应尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化。”因此,在这节课的设计上,我更多的注重了对学生算法多样化的教学。
一、“23+31”教学片断(1)
师:你是怎样计算23+31的?
生1:先算20+30=50,再算3+1=4,最后算50+4=54.,所以23+31=54。
生2:先算23+30=53,再算53+1=54,所以23+31=54。
生3(按捺不住):老师,还可以这样算,先算20+31=51,再算51+3=54,所以23+31=54。
生4:我先算30+30=60,再算60-7=53,最后算53+1=54,所以23+31=54。
分析:倡导算法多样化是基于原来的计算教学中“计算方法单一、过于注重技能的发展、忽视学生的个性发展”等问题提出来的,主要着眼于让学生经历探索运算方法的过程,体验算法的多样化。因此,在这节课的教学中,我适当引导学生:“你是怎样算的?”从中鼓励学生独立思考,让他们自主交流,为自己选择合适的算法,这也为不同的学生形成适合自己的学习策略提供了有效的途径。
注重算法的多样化,但并不是像解决问题一样“一题多解”,算法越多越好,这也是很多人对算法多样化产生的一个误区,就像上面所曾显得学生算法,虽然提出的方法很多,但是不难看出,有些算法过于繁琐,或是思维层次由高到低,其实这与算法多样性目的是不相符的,因此,在学生提出多种算法后,我又加强了学生对算法优化的学习。
二、“23+31”教学片断(2)
师:刚才这几种算法中,你喜欢用什么方法计算?
生1:我喜欢用第一种方法。
生2:我喜欢用第二种方法。
生3:我喜欢用第三种方法。
生4:我喜欢用第四种方法。
师小结:我们今天主要学习用第一种和第二种方法来进行口算,第三种方法在算理上和第二种是一样的。现在我们一起回顾一下这两种方法的计算过程,然后用这些方法来做下面各题。
分析:在算法多样化的过程中,学生的自主性得到了充分发挥,思维处于活跃的状态。算法有多种多样,作为教师有责任引导学生通过比较各种算法的特点,选择合适自己的算法。在这节课中,学生之前所说的方法较多,可以看出,方法2和方法3是同一类,方法4在计算思路比较麻烦,因此我适时引导学生选择运用普遍口算方法,其实也是帮助学生优化算法,正是教师的有效引领,让学生经历了从多样化到优化的过程,学生择善而从之,这是“优化”带来的反应,是学生“选择”的结果。
新课标指出要提倡算法的多样化,它的目的其实也就是对学生个性化学习的尊重,有利于培养学生高水平的数学思维,有利于培养学生“具体地分析具体情况”的意识。但是我认为算法多样化不是没有目的性的将所有算法堆砌在一起,因此在这节课设计中,我不仅让学生体会算法的多样化,还要引导学生优化算法,在多中选优,真正学会普遍使用的计算方法。
两位数加减两位数的口算教学反思 两位数乘两位数的口算教学反思篇五
两位数加两位数的口算,这部分内容是在学生学习了100以内两位数加减一位数、整十数,两位数加减两位数笔算的基础上进行的。主要教学和在100以内的两位数加两位数的口算。同时,引导学生在练习中由需要进位的整十数加整十数的口算类推出相应的整百数加整百数的口算,还适当要求学生掌握两位数加两位数的估算方法。
在探索口算方法的过程中,小朋友们既有独立思考,又有同桌讨论。在互动交流时,学生间互相引领,找出了不同的解决方法。既积极参与学习活动,又大胆发表自己的意见,取长补短,发挥学生集体的智慧,然后在相互补充中得到最佳的方案。他们的解决方法归纳起来大致有3种。
1、笔算法。个位:4+5=9;十位:40+20=60;一共:60+9=69。
2、拆分法。先算:44+20=64;再算:64+5=69。(拆第二个加数)
或先算:40+25=65;再算:65+4=69。(拆第一个加数)
3、凑整法。40+20=60,60+4=64,64+5=69;
或:50+30=80,80-6=74,74-5=69;
……
学生的思维很是活跃,口算方法也很多样化。因为在学生的心灵深处,总有一种根深蒂固的需要:他们总爱把自己当成探索者、研究者和发现者。特别是他们在面临挑战时,都会产生要证实自己实力的愿望。因此我倡导算法多样化,在某种程度上就是要给每个孩子以更大的空间,将自己的算法个性化地表达出来。这种个性化的算法,与孩子的经验是紧密相联的。但是如果仅仅停留在这一点上,是远远不够的。试想,一个孩子如果不去思考、比较和体验其他同学的算法,而只是满足于自己的最初经验之上,他的思维能得到发展、能力能得到提高吗?从经验出发的同时,还需思考怎样让经验得到提升,这才是数学的本质所在。因此在学生呈现了算法的多样化后,还需要教师引导学生进行观察、比较,得出一个较优的算法,进而推广,这样才能得到提升!