作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
初中数学二元一次方程组教案 七年级数学二元一次方程组知识点篇一
1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
把方程组变形后用加减法消元。
根据方程组特点对方程组变形。
用加减消元法解方程组。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?
能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组
思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?
学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?
1.p40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
解二元一次方程组的加减法,代入法有何异同?
p33.习题2.2a组第2题(3)~(6)。
b组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:
2.3二元一次方程组的应用(1)
初中数学二元一次方程组教案 七年级数学二元一次方程组知识点篇二
1.教材的地位与作用
二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。本节内容主要学习和二元一次方程组有关的四个概念。本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。
2.教学目标
[知识技能]
掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的重要数学模型。
[数学思考]
体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。
[解决问题]
通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。
[情感态度]
引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
3.教学重点与难点
按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。
通过学生亲身体验,理解二元一次方程(组)解的个数的确定。
七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。
1.教法
数学课程标准明确指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。所以我在教学中不只传授知识,更要激发学生的创造思维,引导学生探究,发现结论的方法。正所谓“教是为了不教”。所以我采用引导发现法为主,情景问答法、讨论法、活动竞赛法、利用多媒体课件辅助教学等完成本节的教学,真正做到教师的主导地位。
2.学法
学生是学习的主体,所以本节教学中,引导学生自主探究、归纳总结,运用自主探索与合作交流开拓自己的创造思维。这样调动学生的积极性,激发学生兴趣,使学生由被动学习变为积极主动的探究,这也符合数学的直观性和形象性。
为了达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:
1、创设情境,引入概念
nba篮球联赛情景再现,利用世界男篮亚裔球星林书豪激励学生相信自已能够创造奇迹的励志教育,感受数学来源于生活,调动学生顺利引入新课。
2、观察归纳,形成概念
概念的教学,不纠缠于其语言本身,而是通过类比整合形成新的概念。由于学生对一元一次方程概念已经很了解,我主要采用了类比的方法,弱化概念的教学,强化对概念的正确理解,通过学案与课件相结合的方式,以题组形式分层渐进式训练,让学生明晰概念,巩固概念,强化概念,提升能力。
3、拓展延伸,深入概念
知识的掌握,能力的提升是一个不断循序上升的过程,而教学过程更是一个生动活沷,主动和富有个性的过程,让学生认真听讲、积极思考,动脑动口,自主探索,合作交流。
4、当堂检测,强化概念
通过课堂随机选题的形式答题,通过合作小组交流,全班展示交流,使学生互相学习、互相促进、互相竞争,将小组的认知成果转化为全班同学的共同认知成果,从而营造宽松、民主、竞争、快乐的学习氛围,让学生体验到学习的快乐,成功的喜悦,从而充分体现数学教学主要是学生数学活动教学的基本理念。
5、反思小结,回归概念
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,培养学生形成完整的知识体系,养成及时反思的习惯。
美国国家研究委员会在《人人关心数学教育的未来》的报告中指出“没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自已去学数学”。只有学生通过自已的思考建立对数学的理解力,才能真正的学好数学。本节课,我致力于让学生自已去发现数学,研究数学,加强数学思想、方法及科学研究方法的指导,引导学生不断从“学会数学”到“会学数学”,但教无止境,课堂仍然留有遗憾,在今后的教学中,我将从这样的三个方面加强对课堂的研究:一是加强对学法研究、学情研究,让教学方式与内容更符合学生认知规律,更贴近学生实际;二是重视学生课堂的学习感受,营造民主、开放、合作、竞争的学习氛围;;三是提高教学机智、不断创新优化教学方法,科学、合理、灵活地处理课堂上生成的问题。
初中数学二元一次方程组教案 七年级数学二元一次方程组知识点篇三
通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型
让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题
寻找等量关系
看一看:课本99页探究2
问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
思考:这块地还可以怎样分?
练一练
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:
农作物品种每公顷需劳动力每公顷需投入奖金
水稻4人1万元
棉花8人1万元
蔬菜5人2万元
已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
教材106页:探究3:如图,长青化工厂与a、b两地有公路、铁路相连,这家工厂从a地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到b地。公路运价为1、5元/(吨?千米),铁路运价为1、2元/(吨?千米),这两次运输共支出公路运费15000元,铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?
初中数学二元一次方程组教案 七年级数学二元一次方程组知识点篇四
1.教材的地位和作用
本节课是华东师大版七年级数学下册第七章《二元一次方程组》中第二节的第四课时,它是在学习了代入消元法和加减消元法的基础上进行学习的。能够灵活熟练地掌握加减消元法,在解方程组时会更简便准确,也是为以后学习用待定系数法求一次函数、二次函数关系式打下了基础,特别是在联系实际,应用方程组解决问题方面,它会起到事半功倍的效果。
2.教学目标
(1)知识目标:进一步了解加减消元法,并能够熟练地运用这种方法解较为复杂的二元一次方程组。
(2)能力目标:经历探索用“加减消元法”解二元一次方程组的过程,培养学生分析问题、解决问题的能力和创新意识。
(3)情感目标:在自由探索与合作交流的过程中,不断让学生体验获得成功的喜悦,培养学生的合作精神,激发学生的学习热情,增强学生的自信心。
3.教学重点难点
教学重点:利用加减法解二元一次方程组。
教学难点:二元一次方程组加减消元法的灵活应用。
4.教学准备:多媒体、课件。
我所任教的初一(2)班学生基础比较好,他们已经具备了一定的探索能力,也初步养成了合作交流的习惯。大多数学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于七年级的乡镇中学的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨和引导。因此,我遵循学生的认识规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。
说教法:启发引导法,任务驱动法,情境教学法,演示法。
说学法:合作探究法,观察比较法。
(一)复习旧知
1、解二元一次方程组的基本思想是什么?(消元)
2、前面我们学过了哪些消元方法?(“单身”代入法、“朋友”加减法)
下列两题可以用什么方法来求解?
2x3y=16①
x-y=3②3
学生:观察、思考、讨论和交流,然后口述解题方法。
教师:肯定、鼓励、板书。
[设计意图:通过复习,让学生巩固了相关的旧知识,同时也为本节课做了铺垫]
(二)探究新知
1、情境导入
师:我们用代入法来解题第一步是找“单身”,用加减法来解题第一步是找“朋友”,再用同减异加的法则进行解答,那么我们一起来看一下这道题目:
问:这题能否用“单身”代入法或“朋友”加减法来求解?为什么?导入课题,板书课题。[设计意图:利用富有挑战性的问题,激发学生的好奇心和求知欲,可引发学生对问题的思考,并促进学生运用已有的知识去发现和获取新的知识]
2、合作探究
(让学生分组讨论交流,主动探索出解法,教师巡视指导并肯定和鼓励他们。)
总结解题方法:如果一个方程组中x或y的系
数不相同时,也就是说它们不是“朋友”时,先要想办法把“陌生人”变成“朋友”。
方法一:将方程①变形后消去x。
方法二:将方程②变形后消去y。
让学生尝试着写出解题过程,请两位同学上台展示结果,集体订正。请做对的同学举手,全班同学都为自己鼓鼓掌,做对的表示给自己一次祝贺,暂时还没做对的表示给自己一次鼓励。[设计意图:让学生探索这道过渡性的题目,是遵循了学生的认识规律,由浅入深,为学习下面这道例题做好准备,同时通过变“陌生人”为“朋友”这一设想过程,也培养了学生的创新意识。]
3、例题探索例5、解方程组:3x-4y=10①
5x6y=42②
师:这道题的x与y的系数有何特点?如何变成“朋友”?
(让学生思考、分组讨论、交流,教师引导并板书解题过程。)
[设计意图:让学生通过探讨,逐步发现可以用加减消元法去解较为复杂的二元一次方程组,也让他们再次体会了消元化归的数学思想,同时也培养了学生分析问题和解决问题的能力。在整个探讨的过程中也增强了学生的信心,学生有了发现的乐趣和成功的喜悦后,会产生一种想表现自己的欲望。]
4、试一试
学生完成课本第30页的试一试,让学生用本节课的加减消元法和前面例2的代入消元法进行比较,看一看哪种方法更简便?
(小组之间互相交流,写出解答过程,并请一些同学谈谈自己的看法,教师展示两种解题方法让学生们进行比较。)
[设计意图:通过对比两种方法,使学生更清晰地掌握知识,当学生发现本节课的方法比例2的方法更简便时,学生会产生一种用本节课的知识去解题的冲动。]
(三)反馈矫正
解方程组:
(给学生提供展现自我才华的机会,以前后两桌为一个小组进行讨论交流,此时可轻声播放一首钢琴曲,为学生创造一种轻松和谐的学习氛围)
让两个同学上台解题,教师巡视,并每一个组选两名代表检查本组同学的完成情况和及时帮助有困难的同学,待全班同学完成后,让台上这两位同学试着当一下小老师,为全班同学讲解自己所做的题目,教师为评委,进行点评并总结,全班同学为他们鼓掌。
[设计意图:由于学生人数较多,教师不能兼顾每个学生,所以让学生自做自讲,培养了学生综合能力的同时,也活跃了课堂气氛。选代表巡视并帮助有困难的同学,会让学生感受到老师对他们的重视,这样就能让他们主动参与到课堂中来。同时也培养了学生的合作精神和激发了学生的学习热情。]
(四)课堂小结:学完这节课,大家有什么收获?请同学们谈谈对这节课的体会。
[设计意图:加深对本节知识的理解和记忆,培养学生归纳、概括能力。]
(五)布置作业:
必做题:课本第31页的练习。
选做题:
①
(2)
②
[设计意图:进一步巩固本节课知识的同时,也给学生留下思考的余地和空间,学生是带着问题走进课堂,现在又带着新的问题走出课堂。]
二元一次方程组的`解法(四)
找“朋友”——变“陌生人”为“朋友”——同减异加
例题分析习题分析
[设计意图:为了更好地突出本节课的教学重点和让学生更明确本节课的教学目标。]
初中数学二元一次方程组教案 七年级数学二元一次方程组知识点篇五
1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
重点:能根据题意列二元一次方程组;根据题意找出等量关系;
难点:正确发找出问题中的两个等量关系
一、复习
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答
新课:
看一看课本99页探究1
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940
练一练:
1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?
2、有大小两辆货车,两辆大车与3辆小车一次可以支货15.50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?
3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?
4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?
初中数学二元一次方程组教案 七年级数学二元一次方程组知识点篇六
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
1.列二元一次方程组解简单问题。
2.彻底理解题意
找等量关系列二元一次方程组。
小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38练习第1题。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
p42。习题2.3a组第1题。
后记:
2.3二元一次方程组的应用(2)
初中数学二元一次方程组教案 七年级数学二元一次方程组知识点篇七
1. 认识二元一次方程和二元一次方程组。
2. 了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。
理解二元一次方程组的解的意义。
求二元一次方程的正整数解。
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
思考:
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数。
胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=22
2x+y=40
表示
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程。
把两个方程合在一起,写成
x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
探究:
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
x
y
上表中哪对x、y的值还满足方程②
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,试求a、b的取值范围。
(2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,试求a的值。
例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程求m、n的值
例3 已知下列三对值:
x=-6 x=10 x=10
y=-9 y=-6 y=-1
(1) 哪几对数值使方程 x-y=6的左、右两边的值相等?
(2) 哪几对数值是方程组 的解?
例4 求二元一次方程3x+2y=19的正整数解。
教科书第102页练习
习题8.1 1、2题
教科书第102页3、4、5题
初中数学二元一次方程组教案 七年级数学二元一次方程组知识点篇八
1.使学生会用加减法解二元一次方程组。
2.学生通过解决问题,了解代入法与加减法的共性及个性。
探寻用加减法解二元一次的方程组的进程。
消元转化的过程
讲练结合、探索交流课型新授课教具投影仪
学生活动
小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。
新课讲解:
列出方程组
1.解方程组
分析:关键的出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?
板演:
解:〈1〉+〈2〉得:
4x=6
x=
把x= 代入〈1〉得
+2y=1
解出这个方程,得
y=
所以原方程组的解是
2.解方程组
通过议一议,让学生都有感觉消去含x或y的项都可以,但哪个更简便?
解:〈1〉 3,得
15x-6y=12 〈3〉
〈2〉 2,得
4x-6y=-10 〈4〉
〈3〉-〈4〉,得
11x=22
x=2
将x=2代入〈1〉,得
5 2-2y=4
y=3
所以原方程组的解是
加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。
练一练:
解方程组
小结:
加减消元法关键是如何消元,化二元为一元。
先观察后确定消元。
教学素材:
a组题:解下列方程组:
(1)
(2)
(3)
(4)
(5)
b组题:运用转化的思想方法,你能解下面的三元一次方程组吗?
(1)
(2)
学生读题,议一议
学生想一想,如感到困难则看道简单题。
由学生观察,如何求出x,y的值,学生再讨论。
试一试。学生口述。
老师板演
得到一元一次方程
学生再观察,议一议
①消去哪个未知数
②怎样消去?
p112 1(1)(2)(3)(4)
作业习题11.3 p112 1(3)(4) 3 , 4