教案可以帮助教师把握教学重点和难点,提高教学的针对性。教案应该充分考虑学生的认知特点和学习需求,以促进学生的主动参与和探究精神。教案的集体评审和改进是提高教学质量和效果的重要途径,需要教师们共同参与和努力。
不等关系与不等式教案篇一
一、知识结构。
;;;。
二、重点、难点分析。
本节的重点和一个难点是不等式的等价转化。解不等式与解方程有类似之处,但其二者的区别更要加以重视。解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的。过程一定要保证同解,所涉及的变换一定是等价变换。在学生过程中另一个难点是不等式的求解。这个不等式其实是一个不等式组的简化形式,当为一元一次式时,可直接解这个不等式组,但当为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集。
三、教学建议。
(1)在新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等。特别是对于基础比较差的学生,这一环节不可忽视。
(2)在研究不等式的解法之前,应先复习解不等式组的基本思路以及不等式的解法,然后提出如何求不等式的解集,启发学生运用换元思想将替换成,从而转化一元二次不等式组的求解。
(3)在教学中一定让学生充分讨论,明确不等式组“”中的两个不等式的解集间的交并关系,“”两个不等式的解集间的交并关系。
(4)建议表述解不等式的过程中运用符号“”。
(5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法。可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法。
(6)分式不等式与高次不等式的等价原因,可以认为是不等式两端同乘以正数,不等号不改变方向所得;也可以认为是与符号相同所得。
(7)分式不等式求解时不能盲目地去分母,但当分母恒为正数(如分母是)时,应将其去掉,从而使不等式化简。
(8)建议补充简单的无理不等式的解法,其中为一次式。教学中先由学生研究探索得到求解的基本思路及方法,再由教师概括总结,得出结论后一定要强调不等号的方向对的影响,即保证了,而却不能保证这一点,所以要分和两种情况进行讨论。
(9)求解不等式不仅要重视思路的理解,更要重视表述的规范,作为教师应给学生做出示范,学生通过模仿掌握书写格式,这样才有可能保证运算的合理性与结果的准确性。
不等关系与不等式教案篇二
4.会利用一元二次不等式,对给定的与一元二次不等式有关的`问题,尝试用一元二次不等式解法与二次函数的有关知识解题.
二、过程与方法
1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;
2.发挥学生的主体作用,作好探究性教学;
3.理论联系实际,激发学生的学习积极性.
三、情感态度与价值观
1.进一步提高学生的运算能力和思维能力;
2.培养学生分析问题和解决问题的能力;
3.强化学生应用转化的数学思想和分类讨论的数学思想.
1.从实际问题中抽象出一元二次不等式模型.
2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.
1.深入理解二次函数、一元二次方程与一元二次不等式的关系.
启发、探究式教学
复习引入
师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。回顾下等比数列的性质。
生:略
师:某同学要把自己的计算机接入因特网,现有两种isp公司可供选择,公司a每小时收费1.5元(不足1小时按1小时计算),公司b的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司a的上网费用小于等于选择公司b所需费用。
学生自己讨论
点题,板书课题
新课学习
1.一元二次不等式
只有一个未知数,并且未知数的最高次数是2的不等式。
2.三个“二次”之间的关系及一元二次不等式的解法
师在前面我们已经学习过一元二次不等的解法,发现一元二次方程及对应的二次函数有关系,那么同学们课本打开到p77填表格。
生略
师学生讨论归纳出解一元二次不等式的步骤
一看:看二次项系数的正负,并且变形为
二算:,判断正负,有根则求并画出对应的函数图象
三写:写出原不等式的解集
练习反馈
[例题剖析]
例1解下列不等式
(1)(2)
(3)(4)
(5)(6)
课本80页练习
例2已知不等式的解集为试解不等式
变式:
已知
课堂
小结
1.三个“二次的关系”
2.解二次不等式的步骤
作业布置
课本第80页习题3.2a组第1.2.4题b组1
练习调配
不等关系与不等式教案篇三
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标。
(1)经历由几何图形抽象出基本不等式的过程;
(2)体验数形结合思想。
3、情感、态度和价值观目标。
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;
(2)体会多角度探索、解决问题。
【能力培养】。
培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
【教学重点】。
应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程。
【教学难点】。
【教学方法】。
教师启发引导与学生自主探索相结合。
【教学工具】。
课件辅助教学、实物演示实验。
【教学流程】。
shapemergeformat。
【教学过程设计】。
创设情景,引入新课。
赵爽弦图。
1.探究图形中的不等关系。
将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为。这样,4个直角三角形的面积的和是2ab,正方形的面积为。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。
当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有。
2.得到结论:一般的,如果。
3.思考证明:你能给出它的证明吗?
证明:因为。
当
所以,,即。
1)特别的,如果a0,b0,我们用分别代替a、b,可得,通常我们把上式写作:
用分析法证明:
要证(1)。
只要证(2)。
要证(2),只要证a+b-0(3)。
要证(3),只要证(-)(4)。
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
不等关系与不等式教案篇四
尊敬的各位老师:
对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材。
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。
不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。
二、说学情。
合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。
本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。
本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。
三、说教学目标。
根据以上对教材的.分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能。
认识一元一次不等式,会解简单的一元一次不等式,类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。
(二)过程与方法。
通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。
(三)情感态度价值观。
通过数学建模,提高对数学的学习兴趣。
四、说教学重难点。
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:
(一)教学重点。
掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。
(二)教学难点。
不等关系与不等式教案篇五
(一)知识与能力目标:(课件第2张)
1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法.
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:
1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)
1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的`阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
(一)、复习:
教学环节
教 师 活 动
学 生 活 动
设 计 意 图
不等关系与不等式教案篇六
在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,所以老师相信大家一定有办法的.
(一)提出问题,引发讨论
当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,其公共解是否一定为实际问题的解呢?请举例说明.
(二)导入知识,解释疑难
1.教材内容讲解
2.探究活动
1. 应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)
2.双基练习
1.已知方程组 有正整数解,则k的取值范围是_________.
2.若不等式组 无解,求a的取值范围.
3.当2(m-3) 时,求关于x的不等式 x-m的解集.
某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:
(1)用含x的代数式表示m.
(2)求出该次活动中获赠顾客人数及所准备的礼品数
不等关系与不等式教案篇七
1.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
2.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
3.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
4.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
5.不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
数学整式概念知识点。
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
初中数学二元一次方程组知识点。
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).
4.二元一次方程组的解法:。
(1)代入消元法;(2)加减消元法;。
(3)注意:判断如何解简单是关键.
※5.一次方程组的应用:。
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;。
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.
2.不等式的基本性质:。
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;。
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.
不等关系与不等式教案篇八
(三)情感、态度和价值观目标:
2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?
2.让学生探究用基本不等式解决实际问题;?
教学难点:1.让学生探究用基本不等式解决实际问题;?
六、教学过程教师活动学生活动设计意图(一)导入新课。
(二)推进新课。
已知,若ab为常数k,那么a+b的值如何变化?
若a+b为常数s,那么ab的值如何变化?
老师用投影仪给出本节课的第一组问题。
(1)求函数y=2x2+(x0)的最小值。?
(2)求函数y=x2+(x0)的最小值。?
(3)求函数y=3x2-2x3(0xp="")的最大值。?
(5)设a0,b0,且a2+=1,求的最大值。?
(四)例题精析?
当且仅当a=b时,a+b就有最小值为2k.?
当且仅当a=b时,ab就有最大值(或ab有最大值).?
学生完成。
留五分钟的时间让学生思考,合作交流。
学生思考、回答,
不等关系与不等式教案篇九
科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
基于此,我准备采用的教法讲授法、讨论法。德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则交给学生如何发现真理,老师的教是为了不教,这才是教学的最高境界,所以我采用的学法是练习法、自主合作法。
六、说教学过程。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)新课导入。
首先是导入环节,我采用复习旧知的导入方法。我会让学生回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。
这样的设计既可以考查学生对之前知识的掌握情况,还能够为今天学习一元一次方程的概念打下基础。而且开门见山的导入方式能够快速地进入主题。
(二)新知探索。
接下来是新知探索环节,首先我请学生类比不等式以及一元一次方程的概念,给一元一次不等式下定义。
能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
接下来让学生回忆上节课学习的不等式x-726如何解决的,通过学生回忆总结可以得到:通过“不等式的两边都加7,不等号的方向不变”而得到的。
接下来提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。可以得到相当于可以用“移项”,来解决。
在这个过程中,强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
从而我们归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”。根据这一教学理念,在本环节中,我组织学生进行了自主探究活动,让学生在保持高度学习热情和探究欲望的活动过程中,始终以愉悦的心情,亲身经历和体验知识的形成过程。培养学生的探究能力、分析思维能力,激发他们的创新意识、参与意识。
(三)课堂练习。
之所以这样设计是因为练习是掌握知识、形成技能、发展思维的重要手段,针对本课的教学重点和难点,上述练习,目的是让学生进一步巩固对新知的理解。可以深化教学内容,培养思维的灵活性。
(四)小结作业。
最后一个环节为小结作业环节,关于课堂小结,我打算让学生自己来总结今天的收获。
这样既发挥了学生的主体性,又可以提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。
通过这样的方式能够为本节课学习的知识进行进一步的巩固。
七、说板书设计。
我的板书设计遵循简洁明了突出重点的意图,这是我的板书设计:
不等关系与不等式教案篇十
(一)内容。
(二)内容解析。
二、目标和目标解析。
(一)教学目标。
1、理解不等式的概念。
2、理解不等式的解与解集的意义,理解它们的区别与联系。
3、了解解不等式的概念。
4、用数轴来表示简单不等式的解集。
(二)目标解析。
1、达成目标1的标志是:能正确区别不等式、等式以及代数式、
3、达成目标3的标志是:理解解不等式是求不等式解集的一个过程、
三、教学问题诊断分析。
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集、
四、教学支持条件分析。
利用多媒体直观演示课前引入问题,激发学生的学习兴趣、
五、教学过程设计。
(一)动画演示情景激趣。
(二)立足实际引出新知。
小组讨论,合作交流,然后小组反馈交流结果、
最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)。
不等关系与不等式教案篇十一
课前复习提问时,给学生的复习思考时间太短,开始问了几个学生不等式的三个基本性质,有的答不出来,有的答对一点但不完整。在很多学生没有作好充分准备时问到这个问题有点慌乱,我觉得更好的办法是先让学生看一下书复习一下不等式的三个基本性质,然后合起书再叫同学来说效果会更好。
例2学生对实际问题中的字母取值范围考虑不全,在讲解这个问题时带有点填压式,告诉学生字母的取值要大于或等于0,讲过之后可能学生印象还是不深。我觉得应先举一些实际生活中常见的例子,比如在数人的个数时字母应取什么值等,多列举一些例子让学生感性上认识,从而引导学生思考例2的字母的.取值范围。
例3学生根据三边关系往往只列出一个不等式,在教学时我先采取了提问的方式,给出了三个问题,引出三个不等式,然后让学生移项变形,又得出三个不等式,对总结三角形任意两边之差小于第三边做了辅垫。教学效果较好。
学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的回答,剥夺了学生的主动权;比如学生在总结不等式性质3时,总怕他们出错所以老师急于公布结论。有时在学生思考问题时做一些补充打断学生的思路,这样对学生思考问题又带来一定影响;课堂小结中学生的体会与收获谈的不是很好。
不等关系与不等式教案篇十二
填空:
教师追问:第三题()里可以填多少个数?第4题呢?
为什么3、4题()里可以填无数个数?
()里填任何数都行吗?哪个数不行?(板书:零除外)。
这里为什么必须“零除外”?
(板书课题:分数基本性质)。
4.深入理解分数基本性质.。
教师提问:分数的基本性质里哪几个词比较重要?
为什么“都”和“相同”很重要?
为什么“分数大小不变”也很重要?
为什么“零除外”也很重要?
三、课堂练习.。
1.用直线把相等的分数连接起来.。
2.把下列分数按要求分类.。
和相等的分数:
和相等的分数:
3.判断下列各题的对错,并说明理由.。
4.填空并说出理由.。
5.集体练习.。
四、照应课前谈话.。
问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?
板书:
五、课堂小结.。
这节课你有什么收获?
六、布置作业.。
1.指出下面每组中的两个分数是相等的还是不相等的.。
2.在下面的括号里填上适当的数.。
将本文的word文档下载到电脑,方便收藏和打印。
不等关系与不等式教案篇十三
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标。
(1)经历由几何图形抽象出基本不等式的过程;。
(2)体验数形结合思想。
3、情感、态度和价值观目标。
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;。
(2)体会多角度探索、解决问题。
不等关系与不等式教案篇十四
证明推论2证明例4练习。
探究活动。
能得到什么结论。
题目已知且,你能够推出什么结论?
分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。
思路一:改变的范围,可得:
1.且;
2.且;
思路二:由已知变量作运算,可得:
3.且;
4.且;
5.且;
6.且;
7.且;
思路三:考虑含有的数学表达式具有的性质,可得:
8.(其中为实常数)是三次方程;
9.(其中为常数)的图象不可能表示直线。
探究关系式是否成立的问题。
题目当成立时,关系式是否成立?若成立,加以证明;若不成立,说明理由。
解:因为,所以,所以,
所以,
所以或。
所以或。
所以或。
所以不可能成立。
说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的分析,不仅说明结论不成立,而且得出,必须同时大于1或同时小于1的结论。
探讨增加什么条件使命题成立。
例适当增加条件,使下列命题各命题成立:
(1)若,则;
(2)若,则;
(3)若,,则;
(4)若,则。
思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。
解:(1)。
(2)。当时,
当时,
(3)。
(4)。
引申发散对命题(3),能否增加条件,或,,使其成立?请阐述你的理由。
不等关系与不等式教案篇十五
教法与学法:
1.教学理念:“人人学有用的数学”
2.教学方法:观察法、引导发现法、讨论法.。
3.教学手段:多媒体应用教学。
4.学法指导:尝试,猜想,归纳,总结。
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课。
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
(此处学生是很容易得出买30张门票需要4x30=120(元),买27张门票需要5x27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)。
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课。
引例列出了数与数之间的不等关系和含有未知量1205x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3)a与b的和小于5;
(4)x与2的差大于-1;
(5)x的4倍不大于7;
(6)的一半不小于3。
关键词:非负数,非正数,不大于,不小于,不超过,至少。
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果ab,那么。
(1)a-3b-3(2)2a2b(3)-3a-3b。
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系。
三、拓展训练。
根据不等式基本性质,将下列不等式化为“”或“”的形式。
再次回到开头的门票问题,让学生解出相应的x的取值范围。
四、小结。
1.新知识。
2.与旧知识的联系。
五、作业的布置。
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
“让学生主动参与数学教学的全过程,真正成为学习的主人”
不等关系与不等式教案篇十六
4.初步理解证明不等式的逻辑推理方法.
教学重点:定理1,2,3的证明的证明思路和推导过程。
教学过程()。
一、复习回顾。
上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:
二、讲授新课。
在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.
1.同向不等式:两个不等号方向相同的不等式,例如:是同向不等式.
异向不等式:两个不等号方向相反的不等式.例如:是异向不等式.
不等关系与不等式教案篇十七
教学目标。
1.掌握分析法证明不等式;
2.理解分析法实质――执果索因;
3.提高证明不等式证法灵活性.
教学重点分析法。
教学难点分析法实质的理解。
教学方法启发引导式。
教学活动。
(一)导入新课。
(教师活动)教师提出问题,待学生回答和思考后点评.。
(学生活动)回答和思考教师提出的问题.。
[问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法?
[问题2]能否用比较法或综合法证明不等式:
[点评]在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法.(板书课题)。
设计意图:复习已学证明不等式的方法.指出用比较法和综合法证明不等式的不足之处,
(二)新课讲授。
【尝试探索、建立新知】。
[问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?
[问题3]说明要证明的不等式成立的理由是什么呢?
【例题示范、学会应用】。
(学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证.。
不等关系与不等式教案篇十八
教学重点分析法。
教学难点分析法实质的理解。
教学方法启发引导式。
教学活动。
(一)导入新课。
(教师活动)教师提出问题,待学生回答和思考后点评.。
(学生活动)回答和思考教师提出的问题.。
[问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法?
[问题2]能否用比较法或综合法证明不等式:
在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法.(板书课题)。
设计意图:复习已学证明不等式的方法.指出用比较法和综合法证明不等式的不足之处,
激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式.。
(二)新课讲授。
【尝试探索、建立新知】。
[问题2]当我们寻找的充分条件已经是成立的`不等式时,说明了什么呢?
[问题3]说明要证明的不等式成立的理由是什么呢?
分析法证明不等式的概念.(见课本)。
【例题示范、学会应用】。
(学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证.。