当看完一部影视作品后,相信大家的视野一定开拓了不少吧,是时候静下心来好好写写读后感了。这时候最关键的读后感不能忘了。那要怎么写好读后感呢?以下是小编为大家收集的读后感的范文,仅供参考,大家一起来看看吧。
大数据之路读后感篇一
;《大数据时代》读后感
如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。
一读
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分“大数据时代的思维变革”中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。“大数据的简单算法比小数据的复杂算法更有效。”更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。“不是因果关系,而是相关关系。”不需要知道“为什么”,只需要知道“是什么”。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出“不是因果关系,而是相关关系。”这一论断时,他在书中还说道:“在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。”由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可“量化”,大数据的定量分析有力地回答“是什么”这一问题,但仍然无法完全回答“为什么”。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节“掌控”中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:“大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。”谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
再读
概念是研究的逻辑起点,“大数据”到底是什么?在百度上搜索到的解释是,“大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”大数据的4v特点:数量(volume)、速度(velocity)、品种(variety)和真实性(veracity)。但舍恩伯格认为大数据并非一个确切的概念。他在书中的一段诠释更具人文色彩和社会意义:“大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”其实,概念的界定要看研究者从哪个角度来研究它而定。
科学家的治学态度是严谨的,而人文学家更具有想象力。一些对大数据不甚了然的人往往夸大了它的作用,甚至把它神化。舍恩伯格认为大数据的核心是预测。“大数据不是要教机器像人一样思考。相反,把数学算法运用到海量的数据上来预期事情发生的可能性。”舍恩伯格甚至不回避大数据所产生的负面影响,他在第七章里谈到让数据主宰一切的隐忧。我觉得这是实事求是的科学态度。在量子力学里有一个测不准原理:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。它是解释微观世界的物理现象,信息社会中的大数据会不会也有类似情况呢?如果我们再把凯文·凯利的《失控》对比来读的话就更有意思了,这样我们对整个物质世界及至人类社会就有了更全面更深刻的洞察,从物理王国到生物世界,再到信息社会。从公共卫生到商业应用,从个人隐私到政府管理,大数据无处不在。与此同时,从哪个角度探讨用什么方法研究,舍恩伯格都不会忘记大数据服务人类造福人类的终极目的和价值所在。“大数据并不是一个充斥着运算法则和机器的冰冷世界,其中仍需要人类扮演重要角色。人类独有的弱点、错觉、错误都是十分必要的,因为这些特性的另一头牵着的是人类的创造力、直觉和天赋。偶尔也会带来屈辱或固执的同样混乱的大脑运作,也能带来成功,或在偶然间促成我们的伟大。这提示我们应该乐于接受类似的不准确,因为不准确正是我们之所以为人的特征之一。”用中国话来说就是“人无完人”,人类在收获大数据带来的红利的同时也要承受它带来的危害。这不是对立统一的辩证唯物主义?我把它看作带着欧洲批判学派色彩的科学发展观。
问题是研究的价值基点,“大数据”不是舍恩伯格研究的问题,而是研究对象,他研究的是数据处理和信息管理问题,同时也讨论信息安全和网络伦理问题,还引发哲学上的思考,哲学史上争论不休的世界可知论和不可知论转变为实证科学中的具体问题。可知性是绝对的,不可知性是相对的。“大数据”之所以为大是因它引发人类生活、工作和思维的大变革,从这个意义上来看,《大数据时代》的意义不仅在于它讨论了若干重大问题,而且对研究者开出了一个问题清单,从而引发更多人来探讨这些有趣的问题。
《大数据时代》实际上主要是一本讨论数据挖掘的书,数据挖掘与数据分析是不同的概念,数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。而数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。数据挖掘主要运用计算机来进行处理,而数据分析既要用计算机也要人工分析,是计算机科学与人文价值判断的统一结合。换言之,《大数据时代》并不是一本讨论大数据所有问题的书。
《大数据时代》也是一本讨论互联网发展的书,从数字化到数据化,同时有浓厚的未来学色彩。当文字变成数据,我们进入了互联网;当方位变成数据,我们进入了物联网;当沟通变成数据,我们进入了下一代互联网。一切可量化,万物皆数据,正是当今互联网世界的真实写照。面对于这样的世界及世界的未来,在《大数据时代》出现最多的词是“思维”和“方法”,因此也可以把这本书视为思维科学应用研究的书。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
三读
今年国庆节前一天,中共中央政治局常委们来到中关村搞集体学习,调研、讲解、讨论创新驱动发展战略。包括习近平总书记、李克强总理在内的七位常委全部出动来到中关村,这是历史上没有过的,百度、联想和小米的负责人,有了一次直面最高层汇报工作的机会。雷军和柳传志,讲解的都是本公司的各种情况,李彦宏则没有讲百度的广告业务发展得如何好,而是讲起了大数据。在讲解中,李彦宏认为大数据有两个重要价值,一是促进信息消费,加快经济转型升级;二是关注社会民生,带动社会管理创新。这些价值也是目前党和国家领导人最为重视的,可见《大数据时代》既有理论价值也有现实意义。
当今大数据正在影响着新闻传媒业,大数据新闻、大数据营销、舆情分析、受众(用户)研究……数据分析师变身新闻编辑,大数据正改变新闻生产流程、大数据在创造传媒新业态。“不妨想象一下,随着数据的进一步增加,坐拥用户资源的新媒体们完全有能力通过数据挖掘,分析用户癖好,向电视台定制一部电视剧甚至向好莱坞定制一部电影。到那个时候,电视台一如那些家电厂商们,曾经产业链的上游‘王者’,将彻底成为一个产业链最低端的内容代工厂。”然而,情形也远没有人们想象的那么乐观,李彦宏指出目前多数所谓的大数据公司其实还是空壳子,因为数据还没有完全开放。他认为必须在政府层面上推动才能真正实现大数据的开发与利用。我在讨论大数据时代的舆情监测与预警时说道:“经典自由主义传播学说对媒体的定位:秉持公正、客观立场的媒体被称为代表公众监督政府行为的‘看门狗’。其实,媒体既是公众利益也是国家利益的‘看门狗’。要看好门就要瞭望、洞察社情民意,传统媒体信息反馈渠道单一,视野、人力十分有限。而开放互动的新媒体平台却大有可为。作为公共信息发布平台的微博可以成为政府及时了解社情民意,从而选择正确治理路径的‘导盲犬’。”遗憾的是目前我国的数据平台还没有完全开放,真正的大数据时代还没有到来。
与国内不少教科书写法的专著相比,国外的书写得更有趣,尤其是大学者写的,不仅视野开阔,而且能够深入浅出。《大数据时代》不到22万字,却有上百个学术和商业的实例,丰富翔实的例子让读者感到通俗易懂,深奥的理论看起来也不费劲。这恐怕与舍恩伯格既是学者也是专家,既有理论又有实践有关。反观我们些学者故弄玄虚而示高明,实际上是把读者拒之门外。我觉得优秀的科学家也应该是一个科普作家,优秀的学者也应该是一个不错的传播者。当然国外学术著作也有一个翻译问题,这本书译得还不错。此外,《大数据时代》还附有不少it界名流的推荐意见,虽是出版商的发行所为,对解读此书也不无益处。
除了《大数据时代》,舍恩伯格还有一本《删除》也值得一读。要研究大数据不能只读一本书,该书译者周涛教授还推荐了三部国内出版的大数据方面的专著:《证析》、《大数据》、《个性化:商业的未来》。相比《大数据时代》的宏大视野,这些书就大数据某一局部问题给出深刻的介绍和洞见。我也推荐读一读中国工程院李国杰院士和中科院计算所副总工程学旗合写的文章《大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考》。
虽说开卷有益,但是由于每个人的时间精力有限,对于一个研究者来说,不读什么书甚至比读什么书更重要。我认为书有三种:有用的书,主要是应用类的专业书;无用的书,主要是形而上的思想类;无字的书,人间百态,社会现实。可偏重但不应偏废。对于学生来讲这三类“书”都该读一些,对于研究者则要读哪些解决关键问题的书,《大数据时代》就是这样一部书。当然,并非第一个读者都是研究大数据的,但进入大数据时代,还有什么东西与数据完全没有关系呢?麦肯锡全球研究机构认为,未来十年里有12项对经济发展产生重大影响的技术,其中包括三项新媒体技术:移动互联网、物联网和云计算。这三项新媒体技术都与大数据密切相关,而这些新媒体新技术的发展都影响着当今的新闻传播业。阅读此书至少给我们研究新闻传播学带来一些启迪。我觉得一本书的价值不在于让你顶礼膜拜,而是引发广泛而深入的讨论。
“凡是过去,皆为序曲。”读完此书,我们对大数据的认识才刚刚开始。
相关热词搜索:;大数据之路读后感篇二
最近看了《大数据》一书,有一点感想,在这里和大家分享。
作者在后序中写 道,这不是一本纯粹谈技术的书,而是以技术背景探讨人和社会关系的书。今天的中国,是一个人口大国、互联网大国、手机大国,却不是一个数据大国。书中有这 样一组调查数据——“麦肯锡公司以20xx年度各国新增的存储器为基准,对全世界大数据的分布做了一个研究和统计,中国20xx年新增的数据量为250 拍,不及日本的400拍、欧洲的2000拍,和美国的3500拍相比更是连十分之一都没有达到。国内的大数据步伐急需加快。
《大数据》一书对美国大数据的应用进行了十分详细的介绍与分析,我印象最深的为两点。
第一,以海量数据的处理作为政策制定的依据。看这本书的时候,我想到了这两年很火的一个美国人——斯诺登。在其曝光的“棱镜”计划中美政府直接从包括微软、谷歌、雅虎、facebook、aol、skype以及苹果在内的国际公司服务器收集信息。美国政府从这些海量数据中寻找自己需要的数据,并以此作为所谓安全政策制定的依据之一。姑且不论媒体对此计划的口诛笔伐及相应的道德风险,仅从政策制定方面来说,依据于海量数据的政策制定科学性肯定比一般计划要高得多。
20xx年,雅虎 首席执行沃兹博士在《自然》上发表的《21世纪的科学》中提到,得益于计算机技术和海量数据库的发展,我们每个人在现实世界中的活动得到前所未有的记录, 这种记录也更为细致,为社会科学的定量分析提供了极为丰富的数据。打个比方,从你的qq空间、微博、微信中一个普通朋友都能了解到你在哪儿、做了哪些事 情、现在的状态是什么,而新闻的跟帖、网站的下载记录、社交平台的互动记录等等都为社会行为的研究提供了大量的数据。我想到最近比较火爆的穿戴设备,如果 该技术得到普及过后,拥有穿戴设备的人群的生活轨迹、生理各项指标都能轻而易举地得到,相信这些大量的原始数据如能安全有效利用定能为卫生政策的制定提供 科学依据。
第二,万事万物, 凡存在,皆联网,凡联网,皆计算。20xx年起,美国食品与药品管理局开始在药品上推行配备rfid做法即每个食品包装上安装一个薄如纸张或小如豆粒的无 线传感器。通过这个移动传感器,对食品进行连续跟踪,一旦相应的安全事故爆发,就能通过数据库追踪溯源,快速确定传染源与影响范围。这一技术相对于国内尚 在起步阶段的食品追溯具有极强的借鉴性。上面提到的穿戴设备其实就可以视为一个穿戴在人身上的rfid。
20xx年的时 候,美国国家气象局在全国2000两客运大巴上装备了传感器,随着大巴的移动,沿途手机所有地点的温度、湿度、露水、光照度等数据,并立即传给国家气象局 数据中心。数据的采集是每10秒中一次,每天采集10万次以上的数据,这些实时的、高精度的数据意味着天气预报将不再仅仅是”预“,将逐渐走向“实”报、 “精”报。
作者涂子沛在书里 引用胡适与黄仁宇的话。胡适说中国人习惯于当“差不多先生”,凡是马马虎虎、不求精确。黄仁宇认为,中国不懂得用数字来管理国家。作者引用这两位先生的名 言,当然是要彰显传统中国和今天美国之间的差异。但是我们也必须认识到:这两位先生身经当时中国的混乱,激愤而出此言。在大数据浪潮迅猛而来的时候,中国 与100年前已经完全不一样了,我们已经有足够的能力与自信来面对各项挑战。20xx年中国开始着手制定医疗系统的最小数据集,3年之后卫生部出台了第一 版中国医院最小数据集的标准。也是在20xx年,中国创立了第一个全国性的大型社会调查项目,开始对社会的发展和变迁进行全方位、综合性、纵贯性的问卷访 谈调查,即“杨文昊在kod里面穿的裤子”。可以看到,中国政府和企业已经投入到了大数据时代的浪潮之中了。我个人也有几点应对的想法。
一是鼓励、扶持基 于数据的创新创业。书中提到,政策扶持的传统方法,可能是以政府主导建立大数据产业园,对新兴企业提供办公场所等便利条件或者现金支持,这固然有效,但更 为有效的是调动全社会的力量。调动全社会的力量来支持可以包括扶植民间团体,快速推进新技术、新理念在全社会的传播。现在云技术大众基本上都耳熟能详了, 而这主要是各大互联网服务上都相继推出了相应的云服务以及各大媒体对这项技术的关注,促进了大众对新技术的了解与支持。
二是政府机构要建 立专门机构来统筹管理数据工作。在大数据时代不同的数据需要整合,公安、消防、民政、社保等等数据都需要进行联动,将沉睡在数据库内的数据唤醒,为政府制 定政策所用,避免各自为政、多头管理的情况发生。数据的联通也能在一定程度上减少群众的“办证”问题,相信在大数据时代,大家可能只需要一张身份卡就能满 足绝大部分的数据需要。
三是围绕个人数据安全,加强管理。任何技术都是双刃剑,耍得好可以披荆斩棘,耍得不好则会害人伤己,大数据也不列外。如何保障个人隐私也成为了大数据时代面临的一个重大挑战。
大数据之路读后感篇三
;大数据时代
摘要:随着物联网、移动互联网、智能便携终端和云计算技术的发展,人类社会进入了“大数据”时代。对于数据分析,这无疑是一个前所未有的黄金时代。现在,几乎每个人的衣袋都有一部可以随时联网的智能手机,更强大的平板电脑则安静的躺在数亿人的手提包里,加之久久没有退出历史舞台的个人电脑和方兴未艾的物联网中的电子设备,这个世界,每时每刻有数以百亿计的电子精灵在产生数据,一个崭新的数据爆炸时代正喷薄而出。大数据在社会经济、政治、文化,人们生活等方面产生深远的影响,大数据时代对人类的数据驾驭能力提出了新的挑战与机遇。
关键词:大数据?数据爆炸 海量 发展?影响?
一、大数据的概念及形成
1、大数据的概念
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
狭义的大数据概念,主要指大数据技术及其应用,是指从各种各样类型的数据中,快速获得有价值信息的能力,一方面,强调从海量数据、多样数据提取微价值,即具有价值(value)特征;另一方面,强调数据获取、数据传递、数据处理、数据利用等层面的高速高效,即具有快速处理(velocity)特征。大数据概念里的“数据”,是指具有可追踪、可分析、可量化特性的数据。大数据概念里的“大”,是指“大数据”所应具有的“大量化”(volume)、“多样化”(variety)两个特征。从概念内涵上讲,“大数据”(big data),一方面,反映的是规模大到无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合;另一方面,主要是指海量数据的获取、存储、管理、分析、挖掘与运用的全新技术体系。
事实上,大数据的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。很显然,挖掘大数据价值、提供大数据服务的能力,是大数据时代的核心竞争力。
2、大数据形成的必然性
数据管理理念不断变革,大数据成为信息技术发展的必然选择。随着现代信息传播技术手段和方式不断丰富,信息获取、信息传递、信息处理、信息再生、信息利用等功能应用日益多样化,智能化信息系统逐渐形成一个信息网络体系,人类社会的生产方式、工作方式、学习方式、交往方式、生活方式、思维方式等发生了极其深刻的变革,互动化、即时性、全媒体等,成为常态性的信息生态环境,传统的数据库组织架构和信息服务模式已经难以适应信息社会现实需要,整个信息技术架构的革命性重构势在必行,大数据成为信息技术发展的必由之路。
大数据源于虚拟网络的迅速发展和现实世界的快速网络化。虚拟网络的迅速发展和现实世界的快速网络化,两者交互影响,最终导致海量数据的持续生成和繁杂数据的不断出现。
大数据成了决定我们未来数字生活方式的重大技术命题,几乎所有世界级的互联网企业,都将业务触角延伸至大数据产业;无论社交平台逐鹿、电商价格大战还是门户网站竞争,都有它的影子;美国政府投资2亿美元启动“大数据研究和发展计划”,更将大数据上升到国家战略层面。2013年,大数据正由技术热词变成一股社会浪潮,将影响社会生活的方方面面。
大数据的五个特点
类型多。大数据分为结构化数据和非结构化数据。结构化数据包括“1、2、3、4”等传统数字以及符号,非结构化数据包括网络日志、音频、视频、图片、地理位置信息等。
容量大。根据idc(国际数据公司)的监测统计,2011年全球数据总量已经达到1.8zb,而这个数值还在以每两年翻一番的速度增长,预计到2020年全球将拥有35zb的数据量,增长近20倍。
存取速度快。存取速度快有两个意思。一是数据产生的快;二是数据处理的快
应用价值大。大数据之“大”,其实并不在于其表面的“大容量”,而在于其潜在的“大价值”.如果不能把拥有的数据转化为价值,那么拥有再多的数据也是毫无意义的。
具备大智能。正是因为大数据拥有的“大价值”,才使得大数据有机会成为社会的财富和创新的基础,是大数据能够像土壤一样,在不久的将来孕育出一个更加智能的社会。
大数据应用的现状分析?
最早提出世界已经迎来“大数据”时代的机构则是全球知名的咨询公司——麦肯锡。麦肯锡在其研究报告中指出:数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。
事实上,全球it业巨头都已经意识到数据的重要意义和“大数据”时代的到来。包括ibm、emc、惠普、微软在内的全球知名跨国公司都陆续通过收购与“大数据”相关的厂商来实现技术整合。?目前典型的大数据应用领域有:商业智能。例如:用户行为分析,即结合用户资料、产品、服务、计费、财务等信息进行综合分析,得出细致、精确的结果,实现对用户个性化的策略控制,这在营销网络的流量经营分析中占有越来越举足轻重的地位。公共服务。一方面,公共机构可以利用大数据技术把积累的海量历史数据进行挖掘利用,从而提供更为广泛和深度的公共服务,如实时路况和交通引导;另一方面,公共机构也可以通过对某些领域的大数据实时分析,提高危机的预判能力,如疾病预防、环境保护等,为实现更好、更科学的危机响应提供技术基础。政府决策。通过对数据的挖掘,从而有效提高政府决策的科学性和时效性。
四、大数据时代对生活、工作的影响?
大数据,其影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。?
“大数据”的影响,增加了对信息管理专家的需求。事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。大数据在个人隐私的方面,大量数据经常含有一些详细的潜在的能够展示有关我们的信息,逐渐引起了我们对个人隐私的担忧。一些处理大数据公司需要认真的对待这个问题。
总结:这是一个信息爆炸的时代,大数据时代的到来给国家和个人带来了很多机遇,同时也带来了很多挑战。在当下的大数据时代,大数据只是冰山一角,其中的大部分都隐藏在冰山之下,因此大数据还有很多方面值得我们去发现和探索。
参考文献:王珊《架构大数据:挑战、现状与展望》
维克托?迈尔?舍恩伯格《大数据时代:生活、工作与思维
的大变革》
中国百强报刊《时事报告:大学生版》
相关热词搜索:;