做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。计划书写有哪些要求呢?我们怎样才能写好一篇计划呢?下面是小编带来的优秀计划范文,希望大家能够喜欢!
高一数学必修四教学计划篇一
上期期末考试的成绩不是很理想。学生已经开始出现两极分化的苗头。优生的数学思维得到了锻炼和培养,数学知识掌握得较牢固;而差生的智力和知识发展得较差,数学知识上一些基本的内容还很模糊,课堂上参与度不高,有时还需要教师提醒。学生数学上的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步认识,逻辑思维与逻辑推理能力得到了发展与培养,学生从形象思维到抽象思维的过渡阶段,抽象思维得到了较好的发展,但有一部分同学没有达到应该达到的发展高度,学生课外自主拓展知识的能力几乎没有,课堂整体表现活跃,积极开动脑筋,学生乐于合作学习,分享交流自己的发现。
1、做好毕业班学生的思想工作,注意他们的思想动态。关心学生,特别是关心学生的身体健康、生理与心理健康,使其能有良好的心理状态,能坦然面对紧张的学习生活,能正确对待中考。
2、做好导优辅差工作。对于优秀生,鼓励他们多钻研提高题,对于基础较差的学生,抓好基础知识。把主要精力放在中等生身上。
3、充分利用课堂45分钟,提高效率,做到精讲多练,课堂教学倡导学生自主、合作学习、共同探究问题。
本册书的主要内容主要有:二次函数;圆;统计与概率。二次函数的学习是在学习一次函数、反比例函数基础上进行的,学生对于函数概念的认识、研究函数的方法已积累了一定的经验。通过学习,在丰富的现实背景中领会研究二次函数的重要性和必要性,经过探究认识二次函数的基本特性的过程,进一步积累研究函数的基本方法,为以后的学习打下必要的基础,同时,也感受数学与数学的其他内容、以及与其他学科的联系。关注用从函数的角度考察问题,在问题求解过程中领悟函数的应用价值。二次函数是一个重要的初等函数,对二次函数的讨论为进一步学习函数,体会函数思想奠定基础。对于圆的学习,则充分利用圆的对称性,用对称的观点观察图形,以“变换”为工具深入探索,获得一批几何事实。关注圆与直线形之间的内在联系,形成对圆和几何图形的整体性认识。探索活动中关注识别复杂图形中几何要素和基本图形(特别是直角三角形)之间的关系,关注图形的整体结构和运动变化(图形的位置关系),用已有的知识进行说理,确认有关结论。《统计与概率》一章中,主要目的是对前面学过的内容进行回顾与整理,进一步运用已有知识对现实问题和现象进行观察与思考,重新认识知识之间的联系,关注试验操作与理论计算之间的关系和概率与统计之间的内在联系。
1、关注对数学知识的理解(1)对函数的认识是从八年级下学期开始的,引导学生关注变量之间的相依关系,八年级给出了函数的概念,介绍了一次函数和正比例函数,九年级学习二次函数。重视对函数实质的理解和用函数的观点进行观察分析与运用。初中阶段对函数的定义(变量——对应)在二次函数最后的“读一读”中出现,明确的将函数从“关系”中分离出来。领悟函数的实质是教学的重点。(2)在学习《圆》的过程中,应加深对图形性质内在联系的理解,关注图形的位置关系和结构性关系的认识。在探究的基础之上,可以让学生进行适当的几何证明,但不作统一的要求。(3)在《统计与概率》一章中,讨论了生活中出现的一些现象和问题,也包括某些广告宣传中的误导。要学会理性的看待问题,用数据说话,学会用数学的眼光进行合理质疑和进行科学判断。体会随机现象背后的规律性和规律性中存在的随机性,体会概率与统计的内在联系。2、重视反思与知识的重组义务教育阶段所学的数学知识更贴近学生的生活经验。通过任务或问题驱动,教材提供了数学活动的线索,学生经历知识的发生和发展过程,个人的素质得到更为全面的发展。这种教材内容的呈现方式与系统的知识传授相比,显得知识的系统性不强。其实这正如数学历史上所发生的情形,知识的系统化是在知识产生之后进行的(如欧式几何、微积分);更重要的,知识的系统性不应当简单地由老师(教材)告之学生,而应当让学生自己经历“系统化”的过程。因此,在初中阶段的最后学习过程中,尤其应重视反思与总结,对知识进行再组,形成符合逻辑的系统知识。这个活动要在教师指导下进行,力图使得客观的知识结构成为学生自己头脑中的主观结构,而重组的活动经历成为学生重要的学习经验,使得学生由“学会”发展到“会学”。
(一)、以掌握基础知识为目标起点,抓好技能训练。
钻研课标、精通教材,真正弄清学生应知应会的“双基”是什么,适当地降低教学的坡度,以中下生为注意中心去组织教学,把防差措施落实到教学的各个环节去,尽量缩小学生的分化面,把握认识、理解、掌握、应用、综合的目标层次,力求让不同层次的学生都学有所得。不要以为每一个学生都可以轻易掌握的每一节课的全部内容,更不要认定某些学生无论学什么都无法掌握。
1.精心设计好每一节课的教案是实现技能训练的前提
以目标教学模式为例:“前提测评”、“认定目标”、“导学达标”以及“课外作业”是五个基本环节。在这几个环节中应该有足够的练习让学生巩固已有的知识、学习新知识以及让学生达到熟练的程度。也就是说,能使学生做到:“笔不离手”的教案,才能成功地实现技能训练。
2.在课堂上引导得法是实现技能训练的关键
传统的教学方法习惯于教师首先在黑板上先作示范,然后再由学生动手,这样做既费时、低效,又间接地打击了优生的极积性。教师在课堂上应该做到:大部分学生能独立解决的问题,则无须讲,尽量减少举手、口答等无谓形式,以提高课堂教学的教学效益。只有教师时刻记住自己在课堂上的“导演”身份,对学生作出适当的点拔、引导、辅导,把课堂上的时间还给作为“演员”的学生,才能实现有效的技能训练。
3.“限时”是实现技能训练的保证
教师应该根据学生的实际情况对每一组训练题作出限时,让学生在规定的时间内完成,并让学生记录实际所用的时间,才能充分调动学生学习的积极性与主动性。
(二)、以分层训练的方式实现因材施教
传统的课堂教学普遍存在放松差生、缚住优生的现象。差生在课堂上由于不懂而显得无事可做,优生在课堂上仅用5至10分钟就已经掌握了该学的知识,其他时间也是无所事事。针对这种情况,教师必须要在课堂教学中实施因材施教。要实现因材施教,首先,必须深入了解学生的实际。“全部教育心理学还原成一条原理,那就是根据学生原有的知识结构进行教学”,学生原有的认知结构状况是影响学生学习的重要因素。教师不但要了解学生有哪些知识与能力的方面的缺陷,有针对性地设计好相应的练习,及时调整教学方法、进度,以实现因材施教。其次,要实现因材施教,教师必须在练习的设计中准备好差生会做的题目。一个学生可不可教,主要看教师对他的要求如何。在课堂上重视差生的辅导、偏爱差生,给他们树立信心与希望,也是提高教学质量的重要方法。还有,在练习设计中要注意分层训练。比如:“导学达标”和“课外作业”一般为a、b、c三组题目,其中a组题为预备知识,b组题是专为实现技能训练而设置的基础知识、基本运算,c组题是各方面知识的综合运用。对于中下层生,只要求完成a、b两组题目,而优生则可完成a、b、c三组题目。这样,让每一个学生都有适合自己做的题目。也就收到了课堂教学和高效益。
(三)、重视数学能力的培养
数学教学大纲作出了“培养学生的运算能力、逻辑思维能力和空间想象能力”的规定。学生在数学学习过程中的两极分化现象来源于思维水平的差异。学生的思维起点源于学生的知识结构和认识能力。培养学生的数学能力,要求教师在教学中以形象思维作为思路点拨的起点,尽可能多地以直观演示提供数学原型和数学范式,科学地去发现思维通路,从而促进学生抽象思维和创造思维的发展,不断培养费增强学生发现知识、获取知识的主动性。有人说:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”也就是说,教师重视学生数学能力的培养,才能取得良好的教学效果,提高数学教学的质量。
(四)、注重传授数学思想和方法
学生学习数学,学会是基础,会学是目的,变被动学习为主动学习,是完成“教是为了不教”任务的重要标志。教学中,在加强技能训练的同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,还应加强对学生学习方法的指导,着重培养学生的独立性,即在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的数学问题,以便增强学生探究新知识、新方法的创造能力。
1、第一阶段复习
复习时间:第六周——第十一周
复习宗旨:重双基训练,知识系统化,练习专题化,专题规律化。在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。,使学生掌握每个章节的知识点,熟练解答各类基础题,对每个章节进行测验,检测学生掌握程度。复习内容:实数、代数式、方程、不等式、函数、统计与概率、几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆、图形的变换、视图与投影、图形的展开与折叠。配套练习以《**年习题化考点归纳》为主,复习完每个单元进行一次单元测试,重视补缺工作。
2、第二阶段复习
复习时间:第十二、十三周 复习宗旨:在第一阶段复习的基础上延伸和提高,侧重培养学生的数学应用能力。重点进行专题复习及综合题的训练。针对不断变化的中考,必须加强考试的动态研究,以此指导我们的升学复习,抓好专题复习研究。在课堂教学上要注意教给学生的学法指导,让学生对知识的掌握和应用,做到举一反三,得心应手。
复习内容:进行专题复习,如“方程型综合问题”、“应用性的函数题”、“不等式应用题”、“统计类的应用题”、“几何综合问题”、“探索性应用题”、“开放题”、“阅读理解题”、“方案设计”、“动手操作”等,以便学生熟悉、适应这类题型。
3、第三阶段复习 复习时间:第十四、十五周
复习宗旨:模拟中考的综合训练,查漏补缺。
复习内容:研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。
高一数学必修四教学计划篇二
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。
1.通过实例,了解集合的含义,体会元素与集合的属于关系。
2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
3.理解集合之间包含与相等的含义,能识别给定集合的子集。
4.在具体情境中,了解全集与空集的含义。
5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
7.能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
10.通过具体实例,了解简单的分段函数,并能简单应用。
11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的.含义。
12.学会运用函数图象理解和研究函数的性质。
课时分配(14课时)
1.通过具体实例,了解指数函数模型的实际背景。
2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。
5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。
6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。
7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
课时分配(15课时)
1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
课时分配(8课时)
3.1.1 | 方程的根与函数的零点 | 约1课时 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 约2课时 | 10月26日27日 |
3.2.1 | 几类不同增长的函数模型 | 约2课时 | 10月30日 | 11月3日 |
3.2.2 | 函数模型的应用实例 | 约2课时 | |
小结 | 约1课时 |
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
高一数学必修四教学计划篇三
本册书共有六章,其中关于空间与图形的共有两章—第四章《相似图形》、第六章《证明》(一);关于数与代数的共有三章—第一章《一元一次不等式和一元一次不等式组》、第二章《分解因式》、第三章《分式》;关于统计与概率只有一章即《数据的搜集与处理》。
重点
(1)掌握不等式的基本性质,一元一次不等式(组)的解法及应用。
(2)掌握分解因式的两种基本方法(提公因式法与公式法)。
(3)掌握分式的基本性质、四则运算、分式方程的解法及列分式方程解应用题。
(4)成比例线段的概念及应用和相似三角形的性质和判定。
(5)调查方法的应用。
(6)命题的推理论证。
难点
(1)对不等式的基本性质的理解和熟练运用,一元一次不等式(组)的应用。
(2)提公因式法与公式法的灵活运用。
(3)分式的四则混合运算和列分式方程解应用题。
(4)灵活运用比例线段和相似三角形知识能力的培养。
(5)几个概念的理解、区别和应用。
(6)命题的推理论证。
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有的同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
1、认真做好教学工作。把认真教学作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
4、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
高一数学必修四教学计划篇四
认真落实校长办公会关于新学期教学工作的要求,以《初中数学课程标准》为指导,以数学教研组工作计划为参考,围绕“教学”这一中心点,紧扣“质量”这一立足点,加强研究,大力实践,抓实教学常规工作并有所创新,积极稳妥地推动我校的课改工作,形成具有一中特色的办学风格,以人的发展为目标,全面提高教育教学质量。
二、工作目标
1、以学生为本。备课组以学生的实际为切入点,集体探讨一种学生易接受、易掌握的教学方法,努力使绝大部分同学都理解并掌握,力争使每个学生都学有所获。
2、发挥集体智慧,实现资源共享,并保持集体备课的持久性、二次备课的艺术性,以达到提高课堂教学效率的目的。
3、抓学生的学习方法。在教学过程中,培养学生的学习方法,使他们形成自主学习的习惯,并为其终身学习打下基础。
4、知识与能力并举,在教学过程中,巩固所学知识,并强化能力的培养。通过小组合作交流,给学生提供一个展示自我的平台,开发课程资源,以在到活跃课堂的目的。
三、工作措施
1、发挥集体的智慧,加强备课组的建设,充分发挥好老教师和各级骨干老师的带头作用。
2、备课:以集体备课为主,形成统一的有本校特色的讲学稿,保管好所有教学案、课件,供下__届使用。
3、每周备课时,确定下周每节课的内容及每节课的重难点,以及每节课的教法和策略,严格把关和注重学生创新意识和能力的培养。
4、每章开课前,我们先阅读全章内容,确定全章的重难点,做完全章的课后习题。
5、认真组织课堂教学,精心设计教学过程,针对不同班级学生的情况,在二次备课时重新修改设计教学内容。让学生在活动、实践中,掌握知识,力求教学中要鼓励与提倡解决问题策略的多样化,尊重学生在解决问题中所表现出的不同水平。问题情景的设计、教学过程的展开、练习的安排等要尽可能地让所有学生都能参与,提出各自解决问题的方法,并引导学生在与他人的交流中选择合适的策略,丰富数学活动的经验,提高思维水平。
6、让现代信息教育技术与数学教学进行更好的整合,以信息化带动教育现代化,利用现代信息教育技术,为学生创造一个数学实验的环境。所以我们组上课时尽量多地使用多媒体、网络资源,以此强化课堂交流、探索、创新、提高效率。
7、各教师及时的反思自己的教学行为,保证课堂教学的效果。
8、合理利用“综合实践活动课”的阵地,对学生进行数学能力的训练。
9、学习借鉴别人的成功经验,注重不同学科间的相互联系。
10、加强学生学习行为习惯的培养,努力提高学生的作业习惯、听课习惯,严格把握作业的质量,控制数量,及时批改,及时调控教学。讨论和交流上周的教学体验,互相促进进步。
高一数学必修四教学计划篇五
研究新教材,了解新的信息,更新观念,倡导理性思维,重视多元联系,探求新的教学模式,加强教改力度,注重团结协作,全面贯彻党的教育方针,面向全体学生,因材施教,激发学生的数学学习兴趣,培养学生的数学素质,全力促进教学效果的提高。
1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。
2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。
3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。
4、注重应用题和实际应用问题的考查,加强阅读理解能力考查。
5、注重学生创新意识的考查,注重学生创造能力的考查。
6、注重对计算能力的考查,特别是分式、根式、指数对数式以及带字母式子的运算。
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,充分发挥学生的主体作用。
2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为: 牛刀小试 → 典例分析 →归纳小结→限时操练 → 课后检查。
(1)牛刀小试:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。
(2)典例分析:一般4道例题,4个变式。例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1—2种方法,让中下生让能想到1种方法。例3题目要新颖,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析解决问题的能力。例题后面加上变式训练让学生学会灵活运用。
(3)作业:本节课的基础问题,典型问题及天天限时玩。
(4)课后检查:重点检查改错本及天天限时玩的作业。
练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。
4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。
5、发挥集体的力量,共同培养尖子学生。
6、加强数学教学辅导的力度,坚持有针对性地集体辅导。 7、合理安排复习中讲、练、评、辅的时间。
(1)、精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战”。
(2)、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果。
(3)、注重实效,努力提高复习教学的效率和效益。
三月中旬完成第一轮复习,三月下旬及四月份进行第二轮专题复习,五月进行考前冲刺。
总之,高考前的四个月是拼博的四个月,奋斗的四个月,出成绩的四个月,要严格的把握高考脉搏,以学生为主体,让每个学生在这四个月都有质的飞跃,在20xx年六月份的高考中创造新的辉煌!