在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
长方体和正方体的表面积教学课件 长方体和正方体的表面积教学重难点篇一
教材第33页至第34页例1,完成“做一做”和练习六第1题至第3题。
知识目标
1.通过动手操作,观察长方体和正方体的展开图,理解长方体和正方体表面积的意义。
2.根据长方体展开图,能说出每个面的长、宽与长方体的长、宽、高的关系,会计算长方体的表面积。
能力目标
1.培养学生自我探索的能力。
2.结合具体情况能灵活运用表面积的计算方法,解决生活中的实际问题。
情感目标
培养和发展学生的空间观念。
掌握长方体表面积的计算方法。
长方体每个面的长和宽与长方体的长、宽、高的关系。
媒体准备
课件、长方体和正方体纸盒各一个、剪刀、牙膏盒。
一、巩固旧知,重建表象
师:上两节课我们学习了长方体和正方体的认识,谁来说说长方体、正方体有哪些特征?(长方体有6个面,……正方体6个面都是完全相等的正方形……)
二、实物导入、揭示课题
在我们的日常生活中有许多长方体、正方体纸盒(如牙膏盒、粉笔盒等),工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。板书课题“长方体和正方体的表面积”。
提问:当你看了课题以后,你想知道什么?
三、演示操作、建立概念
1.初步认识长方体的表面积。
大家拿出长方体纸盒摸一摸,你能摸到几个面?(6个)
师:把这个长方体的纸盒沿着棱剪开是什么形状的呢?大家想看看吗?教师示范操作。
沿着棱把长方体展开,你有什么发现?
1、原来的立体图形变成了平面图形。2、长方体的外表展开后是由6个长方形组成的。
请同学们观察一下,展开前长方体的'每个面,在展开后是哪个面?分别用上、下、前、后、左、右标明。
在标的过程中你有什么发现?(前后两个面的面积相等……)
2.初步认识正方体的表面积。
教师出示正方体粉笔盒实物图,把剪好的正方体的展开图展示给学生看,问:你又发现了什么?
通过观察和动手操作,谁知道什么叫做长方体或正方体的表面积?
课件出示:长方体和正方体6个面的总面积,叫做它的表面积。
四、学习新知,探索规律
1、明确长方体每个面的长和宽与长方体长、宽、高的关系
问:既然长方体六个面的总面积叫做它的表面积,那么怎样计算长方体的表面积呢?
同学们观察长方体然后讨论:长方体每个面的长和宽与长方体长、宽、高有什么关系?
2、探求表面积的计算方法
出示课件,师:做这样一个牙膏盒至少需要多少硬纸板,就是求什么呢?(求牙膏盒的表面积)
请大家独立完成,如有困难可合作完成。
找学生把不同的方法写到黑板上,并说一说每一步求的是哪个面的面积?
比较几种方法有什么不同?他们之间有什么联系?
课件出示:长方体的表面积 =长×宽×2+长×高×2+宽×高×2
长方体的表面积 =(长×宽 +长×高 +宽×高)×2
小结:我们在求长方体的表面积时,一定要求6个面的面积,方法有多种,用喜欢方法做就可以了。
师:要算长方体的表面积,我们必须知道它的什么?(长、宽、高)
五、巩固练习,拓展提升
1、做一个微波炉的包装箱(如右图),至少要用多少平方米的硬纸板?
引导学生求微波炉包装的面积,实际上是求包装盒这个长方体的表面积。
师:大家注意到“至少”二字了吗?谁能说说为什么要加上这两个字?
(做纸板箱的时候要有粘合处,这里的“至少”指的是粘合处不算,就光算六个面的面积之和就好了。)
2、亮亮家要给一个长0.75米,宽0.5米,高1.6米的简易衣柜换布罩(如右图,没有底面)至少需要用布多少平方米?
六、课堂小结 想象延伸
小结:同学们,刚才我们学习了什么叫长方体和正方体的表面积,怎样计算长方体的表面积?那么在生活中,我们还要根据具体的情况来采取正确的解答问题的方法,比如说有的时候需要求6个面,有的时候只要求5个面、甚至只要求其中的4个面。
板书设计
长方体和正方体的表面积
上、下:长×宽
前、后:长×高
左、右:宽×高
长方体和正方体的表面积教学课件 长方体和正方体的表面积教学重难点篇二
教科书第16页例5及相应的试一试练一练,练习四第6~10题及思考题。
1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。
2、让学生掌握并会运用所学知识解决实际问题。
3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。
根据实际情况判断出应该求出长方体或正方体的哪几个面之和。
一、复习铺垫,导入新课:
1、谈话:上节课我们学习了表面积,谁还记得?
2、计算下面物体的表面积。
(1)一个长方体长5厘米、宽6厘米、高12厘米。
(2)一个正方体的棱长5分米。
指名板演,集体订正。
二、探索领悟,总结方法:
谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。
出示例5 一个长方体鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?
1、 谈话:请同学们说一说鱼缸的样子。
提问:求需要多少玻璃,就是求什么?
使学生明确,求需要多少玻璃,就是求这个鱼缸的.表面积。
启发学生思考:
根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?
学生交流,指名口答。
明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。
2、列式解答:
请学生独立完成。
谈话:你能说说你列式的根据吗?让学生明确算式的含义。
相机出示:
53.5+53+33.5+33.5+53
(53+53.5+33.5)2-53
3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。
4、练一练:
第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。
第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。
完成后,集体订正,指名说出列式根据。
三、巩固练习:
练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。
四、课堂作业:
1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。
2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。
3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.365=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.265=15(平方米)。
4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。
五、思考题:
提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。
长方体和正方体的表面积教学课件 长方体和正方体的表面积教学重难点篇三
义务教育教科书人教版教材五年级下册第三单元第三课时。
1.认识长方体和正方体的展开图,理解长方体和正方体的表面积的概念,会计算长方体和正方体的表面积。
2.经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。
3.体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。
认识长方休和正方体表面积的展开图,掌握长方体和正方体表面积的计算方法。
应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。
长方体、正方体的纸盒,长方体和正方体的展开图。
教学过程:
一、创设情境,导入新课
1.课件出示长方体和正方体。这是我们以前学过和长方体和正方体,老师想用彩纸把这两个立体图形包装起来,但是不知道至少要用多大的彩纸,你能帮我想想办法吗?(把这长方体和正方体的6个面的面积和算出来,就是至少要用的彩纸)
2.长方体或正方体6个面的总面积,叫做它们的表面积。这节课我们就来研究长方体和正方体的表面积。板书课题:长方体和正方体的表面积。
二、自主探索,合作交流
1.认识长方体和正方体的展开图。
(1)如果我们把长方体和正方体的纸盒展开,会是什么形状呢?请你闭上眼睛想象。
(2)把长方体和正方体纸盒剪开,长方体和正方体的6个面的展开图是这样的,(课件出法展开图),和你想的一们吗?
(3)请同学们用上、下、左、右、前、后,分别标出6个面。一个同学上黑板上标注。
(4)哪两个面的面积是相等的?(上、下面的面积相等;左右面的面积相等;前、后面的面积相等地。)底面的长和宽与长方体中的长、宽、高有什么关系?前面呢?后面呢?
(5)如果长方体中的长宽高分别是8米、5米、2米,上面和下面的面积怎么算?5乘2算的是哪个面的面积?8乘2呢?
2.教学长方体表面积的计算方法。
(1)现在你会算包装这个长方体至少要用多少平方米的彩纸了吗?
(2)汇报:
六个面加起来;
相对的面只算一个再乘2;
(长×宽+长×高+宽×高)×2;
你喜欢哪种方法?为什么?总结公式:长方体的表面积=(长×宽+长×高+宽×高)×2;
通过研究我们发发现长方体的表面积和它的面有关,其实就是和它的长、宽、高关,我们要找准每个面的长和宽,才不会出错。
其实我觉得第一种方法是最基本的方法,也很重要,你知道为什么吗?(不规则的物体)
3.教学正方体的表面积计算方法。会求正方体的表面积吗?怎么求?
三、巩固练习,应用拓展。
1.按要求计算各长方体各个面的面积和表面积。
(1)全图
(2)半图
2.求4个面的总面积。一个棱长是30厘米的正方体饼干盒,如果围着它帖一圈商标纸,这张商标纸的面积至少要多少平方厘米?
3.p26第13题。把一个长方体截成两个立体图形,两个立体图形的面总面积比原来的长方体增加了两个截面。
四、反思总结,自我建构
这节课我们研究了什么?你有什么收获?你有什么问题?有兴趣的同学课后可以研究一下。