当前位置:网站首页 >> 文档 >> 2024年数学思想方法论论文(优质9篇)

2024年数学思想方法论论文(优质9篇)

格式:DOC 上传日期:2024-01-12 07:58:27
2024年数学思想方法论论文(优质9篇)
    小编:zdfb

应对挑战是每个人成长和发展的重要部分,只有通过挑战才能取得进步。写总结时,要确保语言简练、易于理解,并适当运用一些修辞手法进行修饰。以下是一些权威机构发布的报告和指导意见,供大家参考借鉴。

数学思想方法论论文篇一

数学思想方法比形式化的知识更重要,教师在教学过程中要引导学生领会和掌握隐含在课本数学内容背后的数学思想方法,使学生能够不断提高思维水平,优化思维品质,培养创新精神和实践能力,真正懂得数学价值,建立科学的数学观念,并形成良好的个性品质及科学世界观和方法论,最终促进学生整体素质提高。

思想是认识的高级阶段,是事物本质的、高级抽象的、概括的认识。数学思想是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中所提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学体系和用数学解决问题的指导思想。数学方法是以数学为工具进行科学研究的过程中,所采用的各种方式、手段、途径等,数学方法就是提出、分析、处理和解决数学问题的概括性策略。

数学方法的运用、实施与数学思想的概括、提炼是并行不悖的,是相互为用的,互为表里的。数学思想是数学中处理问题的基本观点,是对数学基础知识与基本方法本质的概括,是其精神实质和理论根据,是创造性地发展数学的指导方针。数学思想来源于数学基础知识与基本方法,又高于数学知识与方法,居于更高层次的地位,它指导知识与方法的运用,它能使知识向更深、更高层次发展。

1.有利于学生对数学基本概念与原理的理解。

数学思想方法是数学学科的“一般原理”,学生学习了数学思想方法就能够更好地理解和掌握数学内容,有助于学生形成优化的、关联的、动态的数学观。()学生一旦具备了数学严密的逻辑思维能力,对于所修专业基础课程必须了解掌握的基本概念及相关原理就可以更好地全面分析和理解,达到事半功倍的效果。

2.有利于学生更好地将数学和实践相结合。

数学实践能力的培养可以在数学知识学习过程中自发形成和发展,但是有意识地将数学思想和方法渗透到职业教育中的不同思维层次,沿着学生的思维轨迹因势利导,使学生克服学习中的恐惧和盲目心理,激发学习兴趣,提高自觉性,有助于学生将所学数学知识应用于实践,提高其解决问题的能力。

3.有利于学生数学创新意识的培养。

数学思想方法是数学知识的本质,为分析、处理和解决数学问题提供了指导方针和解题策略。学生在数学教师的引导下,通过对蕴含于其中的数学思想方法有所领悟,能激发出数学潜能,积极主动地参与到教师的全程教学中,培养独立思考,独立解决问题的能力。数学是一门思维学科,数学思想方法可以极大地锻炼学生的形象思维能力和逻辑思维能力,向问题的深度和广度发展,达到对事物全面的认识,有利于学生创新意识的培养。

1.教师需要认真备课,充分挖掘教材中的数学思想方法。

数学教材中的概念、定理、公式等都是以结论的形式呈现出来的,即使有推导过程,学生也是重视结果而不重视过程,有公式就可以解题。故其中蕴含的思想方法要么没有在课本中体现出来,要么很容易被学生所忽略。然而,导致结论产生的'思维活动、思想方法,恰恰是数学结构体系中最具价值的东西。所以,教师要刻苦钻研教材,挖掘教材中所蕴含的数学思想方法,以便在教学实践中适时渗透数学思想方法。

2.将思想方法渗透于学生学习新知识过程中。

数学思想方法与数学知识是密切联系的统一体,没有脱离数学知识的数学思想方法,也没有不含数学思想方法的数学知识。因此,教师应在传授数学知识的同时渗透数学思想方法,这样才能使学生对所学知识有真正的理解和掌握,才能使学生真正领略到数学思想方法的真谛。数学知识的形成、发展过程,实际上也是数学思想方法的形成、发展过程。像概念的形成过程,公式、定理的推导过程,问题的发现过程,方法的思考过程,思路的探索过程,规律的揭示过程等都蕴藏着丰富的数学思想方法。因此,教师在数学教学中,不要直接给出概念的定义,而要展示概念的形成过程,揭示概念的本质;对公式、定理不过早地给结论,引导学生积极参与结论的探索、发现、推理过程,从中领悟思维过程中的数学思想方法。

3.将数学思想方法渗透于解题思路的探索过程中。

在解题过程中教师要带领学生逐步探索数学思想方法,使学生在解题过程中充分领悟数学思想方法的重要作用和指导意义。譬如说,数形结合思想是充分利用图形直观帮助学生理解题意的重要手段,它可使抽象的内容变为具体,采用画线段图的方法帮助学生分析数量关系,从而化难为易。化归思想是解题的一种基本思想,贯穿于中学数学的整个学习过程,学生一旦形成了化归意识,就能化未知为已知,化繁为简,化特殊为一般,优化解题方法。还有归纳演绎方法也是解题时常用的一种数学思想方法,这些思想方法都可以在解题的探索过程中帮我们指明前进的方向。让学生提高数学的学习兴趣,提高学习成绩,最重要的是在这个过程中不断接触数学中深层次的内容,提高学生的数学素质。

解题教学过程中指导学生数学思想方法的运用是一个潜移默化的过程,必须通过学生自己反复体验和实践才能逐渐形成。因此教师要在解题教学过程中指导学生有意识地去运用数学思想方法解题。在学生的解题过程中,不同学生由于在学习过程中的理解能力不同,导致对各种思想方法的掌握程度会有非常大的差别。这样就需要教师在教学过程中要不断地进行分析和总结,注意归纳学生作业中出现的错误类型,有的放矢地进行教学;另外通过学生的错误,了解学生对于数学思想方法的理解情况,在课堂上进行细化讲解和分析,在和学生的不断互动中,在循序渐进过程中,学生逐步掌握数学的思想方法。

数学思想方法不但分散在教材中的各个知识点,而且“隐蔽”在数学知识体系中。因此,在平时教学中,要有目的、有计划地对数学思想作出归纳和总结,使学生有意识地自觉地参与数学思想的提炼与概括;尤其是学习了一章节或系统复习中,将数学思想方法概括出来,不但使学生对已学知识有统摄作用和指导意义,更能加强学生运用数学思想方法解决实际问题的意识,从而有利于强化所学知识,形成独立分析问题与解决问题的能力。概括数学思想方法一般分为两步:一是揭示数学思想内容、规律,即将数学共同具有的属性或关系抽出来;二是明确数学思想方法与知识的联系,将抽出来的共性推广到同类的全部对象上去,从而实现从个别认识到一般认识。

结语。

数学思想方法是对数学知识发生过程的提炼、抽象、概括和升华,也是对数学规律的理性认识。它直接支配数学的实践活动,是解决数学问题的灵魂。在教学过程中要本着思想方法与教材内容、学生认知水平相适应的原则。我们要在教学中对常用、基础的数学思想方法大胆实践、坚持不懈、持之以恒,寓数学思想方法于平时的教学中,并有意识地运用一些数学思想方法去解决问题,引导学生在学习中认识一些分析问题、解决问题的数学思想方法,从反复实践、循序渐进中升华为终生受用的分析问题、解决问题的思想方法、手段。

总之,在数学教学中,以数学思想方法的渗透为主线,有利于学生对数学知识的理解和掌握,有利于提高学生的思维品质,优化学生的思维结构。

数学思想方法论论文篇二

素质教育,面向全体学生,让学生全面发展,是当前教育改革的主要任务,世界上的一切事物,都有对立面,如好与坏,前进与后退等,而且对立的双方可以互相转化。学生的学习也是如此,同是一个班,有尖子生,也有学困生。俗话说:“十个手指都有长短”。提起学困生,每位班主任老师都会感到头痛,转化学困生是班主任老师最经常,最棘手的一项工作。

学困生是学校领导的一块心病,也是班主任最感到头痛的事,同时也成为当今教育领域的一大社会问题。学困生的存在是不可避免的,我们教育工作者应该积极去面对,帮助每一个学生成功是教育工作者的根本目的,也是广大教育工作者的共同愿望。由于各种因素,在我们学校的各个班级中,不同程度地存在着学习困难生,他们有的由于学习基础较差,有的由于学习态度不端正或学习习惯较差等,表现出对学习不感兴趣,缺乏信心等不良特征。学困生的存在成为困扰每个教师的一大难题,也制约了学校教育教学质量的提高。特别是农村学校,由于农村学生家长教育不当,留守儿童多,缺乏家长教育,农村学困生比例相对较大。

农村学困生主要有以下几点特征:

一、具有明显的自卑感,失落感。

由于学困生学习成绩差,一时无法弥补他们在群体中落后的位置,家长埋怨,老师指责,同学歧视,导致他们自暴自弃,不思进取,形成一种心理定势“我不如人”,长期生活在一种颓丧抑郁的氛围中,对学习丧失信心。

二、具有胆怯心理。

学习上遇到困难不敢向老师或同学请教,不愿意暴露自己的弱点,怕别人讥笑,结果一连串的问题得不到解决,形成恶性循环。

三、具有压抑心理。

多数学困生也想学好,家长也很希望他们成才。但由于基础差总是学不好,于是得不到老师的重视、同学的帮助和家庭的温暖,常常陷于痛苦忧伤难以自拔的心境之中,情绪波动,性格浮躁,导致悲观消极的压抑心理。

四、具有惰性心理。

学习上不肯用功,思想上不求进步。只图安逸自在,玩字当头,混字领先,怕动脑子,缺乏吃苦精神,不愿意在困苦中学习。

五、具有逆反心理。

由于学困生得到的常常是批评,指责和嘲讽,因此,对老师的教育产生反感,形成逆反心理。

六、普遍的学困生都缺乏远大的理想和抱负,对自己的学习目的不明确。

不知道一天该做什么,对什么都不感兴趣,结果什么都做不好。

七、注意力不集中,记忆速度慢,遗忘快。

90%的学困生课堂注意力不集中。他们心里想集中但集中不起来。所学的知识记不住,记住的也很快就忘。

八、学困生由于对知识掌握差,遇到过去的已有的知识不能很好的回忆、再认,使知识不连贯,无法跟上教师上课进度。

九、迁移能力差。

对照例题能完成部分作业,但对变形的题就不知所措。举一反三的能力差。

十、归纳概括能力差。

学困生的学习停留在识记阶段,对事物共性的认识并进行归纳的'能力较差。在学习中基本上无法归纳、总结。

大多数班主任都认为对品学兼优学生的管理比较轻松,而对学困生的教育,不少教师感到很棘手。曾几何时,做教师尤其是当班主任的我们,经常抱怨这样的学生如何如何地难教,学生是如何如何地没有感情,甚至责骂学生蠢笨不可教……。没有不好的孩子,只有不好的教育。因此,如何教育学困生是老师特别是我们班主任一项值得深究的课题。学困生通常是指那些在学习或品行方面暂时落后的学生。这类学生给班级工作的正常开展带来负面影响,特别是学习、品德都很差的学生。我从事班主任工作已有二十多年,转化学困生的工作,不论从学校角度来讲,还是从学生成长来讲,都十分重要,那么,如何转化农村学困生呢?我觉得可以从以下几个方面入手:

一、对他们要充满爱心和信任。

日本教育家池田大作说过:“伸出充满热爱的双手,这就是英才教育。”爱,可以激发学生的兴趣,反之,则可能泯灭学生的天才。我们要坚持多表扬、公开场合少点名批评、正面疏导的工作方法。对后进生要从生活上给予关心,让他感到温暖。实践证明:这样做效果往往较好。从学生的心理需要上讲,爱和信任是他们最渴望得到的东西。学生渴望在充满爱心和信任的环境中成长。作家冰心说过,爱是教育的前提,爱是教育的基础,没有爱就没有教育。教师的亲切感能引起学生的接近感。教师要满腔热情、诚心诚意地关怀爱护学困生,每当他们有困难时,教师要及时帮助他们。通过集体活动,培养互助友爱精神,使他们感到集体的温暖,安心学习。

我们教师爱护差生要像救火救灾似的,刻不容缓地去抢救他们,光停留在咬牙切齿地去咒骂、去怨恨,是达不到转化他们思想这一目的的。如果班主任能以发自内心的爱和信任对待学困生,善于发现学困生的长处,看到他们的闪光点,尤其是当他们有了进步,那怕是一点进步,都要及时给予表扬和肯定,比如,本班的周富枝同学,在学习上较差,上课不安分,但他在校运会上取得好成绩,我及时表扬他,并说如果学习也有这样好,你就是一个非常优秀的学生,后来他学习比以前自觉多了。多施雨露,少下风霜,激发他们的上进心,从而促使后进生在思想觉悟上提高,养成良好的学习习惯。

二、要与学困生交心,做他们的知心朋友。

情感是打开学生心灵的一把钥匙。“教育没有情爱,就成了无水之池。”必须经常要抽出一定的时间深入到学困生的学习、生活中去,与学困生广泛地接触,给予百倍的耐心和无微不至的关怀,了解他们的内心世界、思想动态,做他们的知心朋友。

帮助学困生克服学习生活中的困难,多同他们进行情感性交谈。这种谈话方式往往话题自由,态度随和,可在学生心中激起强烈的情感波澜,使学生对老师产生亲近感,从而消除了畏惧心理,撤掉了心理防线,进一步融洽了师生关系,那么学生就会把你当做为知心朋友,有什么心事就会向你诉说,让你帮他出主意、想办法,你也会从中了解他们的性格特点以及在日常学习、生活中的兴趣、爱好等,从而寻找出最佳的教育方法。

三、教师和家长的配合要紧密。

学困生的转化工作主要靠学校,但也需要家庭支持,社会配合,在学校里,我们应提倡素质教育,促使学生德、智、体、美、劳全面发展,变教书为“铸魂”,使学生在学习过程中不仅仅接受知识,还要有愉快的情绪和积极的情感体验,如今新教材改革,要求学校把更多的时间还给学生,丰富他们的业余生活,注重他们的均衡发展,这是我们减少学困生的有效途径。学生的家庭我们要常去走走,适当的家访,面对面的交流能拉近我们与学生和家长的距离,还能更好地了解学困生的成因所在。例如本班的李献云同学,学习成绩优秀,但近来上课精神不够集中,情绪低落,通过家访,了解到她父母闹离婚,我及时疏通父母及学生的思想,使她重新集中精力在学习上。通过家长、学校,培训和教育家长如何教育子女,通过家长会进行互相交流,让我们与家长齐抓共管,形成合力,共同转化学生的思想。

四、要尊重学困生,平等相处。

学困生与优秀的学生也一样,他们也希望得到老师的尊重。前苏联教育家苏霍姆林斯基说:“自尊心是青少年心理最敏感的角落,是学生前进的潜在力量,是前进的动力,是向上的能源,它是高尚纯洁的心理品质。”这说明维护学生的自尊心是做好学困生工作的前提。后进生的自尊心时强时弱,教师应根据这一点,保护他们“极其脆弱的自尊心”。对他们提出的合理要求,要给予满腔热情的支持,对他们的点滴进步更应该给予肯定。教师不但自己要尊重学困生,保护他们的自尊,还要教育其他同学也要尊重学困生,平等对待学困生,切不可挖苦、讽刺、打击他们,要与学困生保持良好的同学关系,相互帮助,共同进步。

教师在教育教学活动中,如果发现学生做错了事,就会恨铁不成钢,不去积极引导他们,而是一味地训斥、指责、向家长告状等,既伤害了学生的自尊心,又容易使人产生逆反心理,乃至对抗情绪,所以在与学生交谈时要注意引导。其实许多学困生和大多数同学一样,内心里非常希望得到家长、老师、同学和社会的安慰、保护、理解和尊重。尽快地加倍努力、迎头赶上,甩掉后进生的帽子。然而,由于他们学习成绩不理想或屡犯错误,往往会受到老师、家长的批评、讥讽、挖苦、训斥、打骂、体罚,时常受到冷遇,使他们人格、自尊受到极大损害,与学校、家庭、教师、家长间滋生对立情绪,认为反正被人瞧不起,破罐子破摔、拉倒。由此他们失去前进动力,形成自卑心态。

学困生的自卑心态是希望改变现状,求得尊重。可以说,没有自尊心就没有自卑感,要上进,必须付出艰辛的努力和痛苦的抉择,而他们长期形成的松散、懒惰的坏习惯,害怕艰苦的脑力劳动,缺乏毅力,造成了意志薄弱的心理缺陷。因此在发展过程中上进心与惰性一对矛盾交织存在。一旦遇到难以逾越的困难,就会退缩不前,打退堂鼓,丧失前进的勇气和信心,往往容易旧“病”复发。表现不良行为习性的反复。班主任一定要耐心把握时机,耐心进行思想教育,抓住学生的闪光点,及时表扬、不断给学生鼓士气。

五、以宽容之心对待他们。

宽容不是忍让,更不是纵容。只是当我们发现学困生做错事时,我们首先要以宽容的态度来对待他们的不是,从不同角度谈问题,换位思考,让他们明白什么可以做,什么不能做。当然,凡事都有一个过程。我们应该给学困生一个学好、变好的过程。一个人要学好不是一件容易的事。因调皮而致后进的学生,他们的行为不受常规约束,顽皮、淘气,不接受师道尊严,有时甚至顶撞老师,这些正是他们个性的反映,其中,很可能蕴藏着创造潜能。要容忍爱护,耐心指教,并发掘他们的闪光点。

六、以身示教,树立榜样。

榜样的力量是无穷的,它是无声的召唤,前进的灯塔,它也是学困生前进的目标,它能激励学困生天天向上。榜样可以是领袖将帅,英雄模范,名人贤达,师长父母,也可以是同学、伙伴,最好是和学困生各方面基础差不多,但成绩进步很大的同学。比如你作为班主任要求男学生不留长发,自己首先要理好自己的头发,要给学生做个榜样,这样做起学生的工作就容易多了。通过这些活动,就使学困生有样可学,并使其明白,只要经过努力,就会有进步,就会成功,从而产生一种后进赶先进,后进超先进的念头,树立开拓进取心,摒弃不良倾向,于无声处达到成功教育的目的。

全面正确的看待学困生是教育工作的起点。学困生的缺点和不足是显而易见的,但学困生身上也有金子般的闪光点,教师就应该更好地去发现学困生身上容易被忽视、掩盖的可贵之处,开发学生心灵深处的精神宝藏。比如,自尊心强渴望得到信任,重友谊讲感情,生活知识较多,实践能力强,精力充沛,兴趣广泛等。只有全面正确地认识学困生,采取针对性的教育,才可收到良好效果。我尝试运用学生管理学生的办法,有意识让部分学困生参与班级管理,如有的学生管理纪律、有的学生管理劳动、有的学生管理卫生。让他们当室长,一个学期下来,发现这些学生有很大的进步,自我约束能力、社会责任心、工作能力等进一步增强,通过班主任的肯定和同学们的相信,学习兴趣明显增加,他们的思想有了很大的转变。

大量的教育实践证明,只要教育教学得法,没有一个学困生可以被认为是不可救药的,教育的艺术就在于善于拨开学生眼前的迷雾,点燃学生心中的希望之火,帮助学生体会到上进及学习成功的快乐,诱发学生的责任心和荣誉感。

总之,对学困生,我们只要给他们多一点关怀,多一些耐心,多一些细心,多一些时间,多给他们创设一个宽松、民主的学习情境,他们一定会成为一个自尊、自重、自强、自立的好学生,将来也同样成为社会主义现代化建设的有用人才。

数学思想方法论论文篇三

数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。小学数学课程标准在总体目标中提出:“通过义务教育阶段的数学学习,使学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”数学思想方法是数学的灵魂,作为小学数学教师,我们应如何有意向小学生渗透教材所蕴含的数学思想,并且让小学生感受数学思想方法的奇妙呢?现结合人教版五年级数学教学谈谈笔者个人的一些经验和感悟,以供同仁们参考。

一、认真钻研教材,理解教学内容,感悟数学思想,注重教材的整体性。

钻研教材是小学数学教师形成数学教学能力的基础,小学数学教师只有通过钻研小学数学教材,掌握小学数学教材特点,明确小学数学教学的目标,了解了小学数学教学的规律和内容,娴熟地运用和掌握了行之有效的教学方法,才会形成成熟的小学数学思想和方法。各年级的数学教材中都蕴藏着丰富的数学思想方法,作为小学数学教师应该在精心钻研教材时,发现并挖掘教材中蕴含的数学思想方法,从中领会到数学思想方法的内涵及魅力。

小学数学教材是小学数学教师进行教学的主要依据,是教师备课的基础性资源。教师要教好课,必须研究教材、掌握教材。准确理解教学内容,首先要了解小学数学各册教材的内容及其编排意图,知道教材的前后联系,避免教学时的前后脱节或不必要的重复。其次,要深入分析研究自己当前所教的一册教材,着重弄清全册的基础知识和注意培养的基本技能,各章节的.教学目的要求,编排顺序,教学的重点和难点,以及每节教材中的例题、习题的配合情况。最后对准备教的一节或一段教材进行细致的分析与研究,包括掌握教学目标,明确所教教材的地位、重点、难点和关键,研究练习题。小学数学课堂教学的实践表明,一些低效的教学行为在很大程度上与教师对教材内容的理解和把握有关,由于教师对小学数学教材的钻研不够,不能准确地领会教材编写意图,理解教学内容的地位和作用,导致许多低效、甚至是无效的教学效果。事实上,准确理解教学内容,注重教材的整体性,更加有利于教师选择教学方法,设计教学方案,提高教学的目的性和有效性。

二、灵活处理教学内容,注重教材的结构性,将数学思想合理有效地渗透在教学中。

小学数学教材中蕴藏着丰富的数学思想方法,小学数学教师要做课堂的有心人,抓住契机,在不显山不露水的状态下有意向学生渗透数学思想方法,使学生能对数学思想有所感,有所悟,从而感受数学的魅力。

我国数学家华罗庚曾说:“数缺形时少知觉,形少数时难入微,数形结合百般好,隔离分家万事非。”数和形是数学研究的主要对象,而数离不开形,形离不开数。小学数学教师要善于引导学生借助一些简单、直观、形象的图形使一些复杂的问题简单化,抽象的问题形象化。如教学《真分数、假分数和带分数》时,教师可以给出一组表示分数的图形,让学生观察、比较每个图形所表示的分数,比较分数的分子和分母的大小。在学生给出得数后,教师可追问:“这些分数比1大还是比1小?为什么?”运用直观图形和分数结合,就可帮助学生轻松理解建构数学概念的含义。

转化与化归思想是小学数学学习中常用的思想方法。五年级数学教师都清楚《多边形的面积》这一单元是向学生渗透转化与化归思想的绝佳时机,而平行四边形面积、三角形面积和梯形面积中,又数平行四边形面积的转化最重要。只要学生理解并掌握了将平行四边形面积转化为已经会算的长方形面积的方法,后面再学三角形面积和梯形面积就可迎刃而解了。教师在教学时可先给学生创设一个故事情境:从前有个农夫有两个儿子和两块地,一块地为长方形,一块地为平行四边形,一天他把这两块地分给两个儿子。可是两个儿子看到地后都觉得父亲不公平,都认为对方的地比自己的大。你有什么办法帮帮农夫吗?学生听完故事后兴趣高涨,有的说长方形的面积大,有的说平行四边形的面积大,还有的说两个一样大。此时教师可发给学生两个完全一样的平行四边形,让学生思考并尝试能否把平行四边形转化成能算面积的图形。学生思考后很快就想到把平行四边形通过一剪一拼转变成一个长方形。这时教师再让学生拿出另一个平行四边形和剪拼后的长方形比一比,学生很快得出剪拼后两个图形的面积不变,而剪拼后的长方形的长就是原来平行四边形的底,剪拼后的长方形的宽就是原来平行四边形的高,由长方形面积计算公式可推导出平行四边形面积的计算公式。学生通过剪拼转化和教师小结性的板书,转化思想已深深烙在脑海中。再学三角形面积和梯形面积时,学生就会很自然地在已有的认知经验基础上利用转化的思想方法来学习新知。

笔者在教学小学数学《分数的基本性质》一课时:首先出示“1÷2=?2÷4=?4÷8=”,然后向学生提问:“你发现了什么?”有的学生根据商不变的规律发现得数都是0.5;有的学生根据分数与除法的关系得出商不变。此时教师让学生采用折纸、涂色的操作活动得出分数的基本性质,并再次让学生思考:“分数的基本性质能不能根据分数与除法的关系和商不变的性质来说明呢?”从而让学生发现分数的基本性质和商不变性质在内容上、在语言描述上有很大的相似性。

在小学数学课堂教学中,教师要站在学生的立场,引导学生独立思考,引导学生与人交流,在交流中呈现自己的想法,在倾听别人的陈述中进行比较和选择,从而在多种方法中挑选出最优的方案。如教学《找次品》一课时,我先出示9瓶矿泉水,并告诉学生这其中有8瓶是一样重的,有一瓶是比较轻的,让学生采用小组合作、动手探究的方式用天平找出次品。学生在合作探究后得出多种方案。此时,教师再引导学生从多种多样的方法中观察、对比、交流,让学生借助列表、画图等方式找出最优的方案,体会优化思想。

总之,小学数学教师要在小学数学教育教学中选择恰当的时机,选择恰当的方法向学生有意渗透恰当的数学思想方法,使学生感悟数学思想和方法,这样学生才会终身受益,在数学的海洋中自由畅游。

数学思想方法论论文篇四

长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程中的数学思想方法的现象非常普遍,它严重影响了学生思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者,特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。

初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。(一)转化的思想方法。转化的思想方法是人们将需要解决的问题,通过某种转化手段,归结为另一种相对容易解决的或已经有解决方法的问题,从而使原来的问题得到解决。初中数学处处都体现出转化的思想方法,例如:在解二元一次方程组中,我们一般都通过代入消元法和加减消元法将它转化为一元一次方程,而在解一元二次方程时,可以通过配方法因成分解法直接开平方法,将它化为一元一次方程来解等。它们都是化未知为已知,体现转化的数学思想,又如解方程,我们用换元法来解,也体现转化的数学思想。在几何中很多计算题也同样体现着转化的数学思想。(二)数形结合的思想方法。数学是研究现实空间形式和数量关系的科学,因而研究总是围绕着数与形进行的。“数”就是代数式、函数、不等式等表达式“,形”就是图形、图像、曲线等。数形结合就是抓住数与形之间的本质上的联系,以形直观地表达数,以数精确地研究形。“数无形时不直观,形无数时难入微。”数形结合是研究数学问题的重要思想方法。初中数学中,通过数轴,将数与点对应,通过直角坐标系,将函数与图像对应,用数形结合的思想方法学习了相反数的'概念、绝对值的概念,有理数大小比较的法则,研究了函数的性质等。特别学习一次函数、二次函数更进一步地把直线和一次函数联系着,任向一条直线对着一个不同一次函数表达式,不同的抛物线对着不同的二次函数表达式,而用数形结合的思想,可以利用二次函数或二次函数的图象简单的解出一元一次不等式和一元二次不等式和方程,更好地通过形象思维,过渡到抽象思维。大大减轻了学习的难度,也会增强学生学习的兴趣。

分为不同种类的思想方法。分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,解决数学问题。初中数学从整体上看分为代数、几何两大类,采用不同方法进行研究,就是分类思想的体现。具体来说,实数的分类,方程的分类、三角形的分类,函数的分类等,都是分类思想的具体体现。在初中数学问题中,不管是代数问题或者是几何问题,都体现着分类讨论的数学思想方法。

函数思想是客观世界中事物运动变化,相互联系,相互制约的普遍规律在数学中的反映,它的本质是变量之间的对应。用变化的观点,把所研究的数量关系,用函数的形式表示出来的,然后用函数的性质进行研究,使问题获解,如果函数的形式是用解析式的方法表示出来的。在实中数学教材中,其它的思想方法都是隐藏在数学知识里,没有单独提出来,而函数与方程的思想方法,其内容和名称形式一致,单独作为章节系统学习。

数学思想方法论论文篇五

所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们称为数学思想方法。

小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。

在认知心理学里,思想方法属于元认知范畴,它对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的'“就意味着解题”(波利亚语),解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。

数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会将需要大量具有较强数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“问题解决”。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。

小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。

古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由于小学生的年龄特点决定有些数学思想方法他们不易接受,二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。

1.化归思想。

化归思想是把一个实际问题通过。

[1][2][3][4]。

数学思想方法论论文篇六

摘要:。

数学思想方法是数学知识的核心,是数学的精髓和灵魂,是研究数学理论和运用数学解决实际问题的指导思想。本文针对目前高职数学教学中存在的数学思想方法教学重视不够以及教法上随意性的现状,提出通过加强数学史和基本数学思想方法的介绍,以及倡导“问题解决”的教学模式来提高学生的数学素养。

关键词:。

数学教学;数学思想;数学教学改革。

数学思想是人脑对现实世界的空间形式和数量关系的本质反映,是思维加工的产物,是人们对现实世界空间形式和数量关系的本质认识。它隐藏在数学概念、公式、定理、方法的背后,反映了这些知识的共同本质。它比一般的数学概念和数学方法具有更高的概括性和抽象性,因而更深刻、更本质。数学思想方法是数学课程的重要目的,是发展学生智力和能力的关键所在,是培养学生数学创新意识的基础,也是一个人数学素养的重要组成部分。

1.1思想上不重视。

高职教育更加强调“专业教育”,对高职数学教育提出了“必须、够用”的原则,这直接导致数学课时减少,内容不得不被压缩。这使得一些数学教师片面理解“为专业服务”的真实含义,教学中采用以知识为本位的教学,只关注知识的教授本身,学生只是学到了各种题目的具体解法,并没有掌握数学思想方法,解决问题的水平并没有得到提高。在后续学习中,导致学生数学知识面偏窄,数学思想苍白,眼界不广,缺乏创造力,“后劲”不足。

1.2教法上的随意性。

现行教材主要以知识结构作为编写体系,数学思想散见于教材之中,这就决定了数学思想教学的主观随意性很大,其教学效果主要依赖于教师对数学思想的理解程度。虽然在目前的数学教学中非常强调能力的培养,但在实际教学中往往只注重运算能力和逻辑推理能力的训练,一些重要的数学思想被淹没在大量的计算、证明题之中,失去了应有的魅力和价值。例如,导数思想是高等数学中的重要思想,但导数部分的内容常被当作求导的技能技巧来训练,成为一种机械操作,使学生在专业工程技术、经济、电工学习中对影子价格、边际函数、瞬时电流强度等感到困惑。

教学是素质教育的需要高职数学教学的根本目的,就是提高学生的数学素质,使学生形成良好的数学观念和数学意识,善于用数学思想方法去观察、解释、表述现实事物的数量关系、变化趋势、空间形式和数据信息。可见,加强数学思想的教学是对学生进行素质教育,全面培养新世纪合格人才的需要。

教学是教学改革的新视角从教材的构成体系来看,高职数学教材所涉及的数学知识点和数学思想汇成了数学结构系统的两条“河流”。一条是由具体的知识构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”。有了数学思想,数学知识点才不再是孤立的、零散的东西,而是数学的内在本质,是获取数学知识、发展思维能力的动力工具。因此,我们的数学教学改革可以从这条“暗河流”入手,对学生进行思想观念层次上的数学教育,这将是进行数学素质教育的有效突破口。

教学是学生可持续发展的需要数学思想越来越多地被应用于环境科学、自然科学、经济学、社会学、心理学和认知科学之中,加强数学思想的教学,可以影响学生的整体素质,为学生今后的工作和学习奠定基础。如定积分的思想广泛地被应用于自然科学和社会科学中。

因此,21世纪的数学课程必须突破原有的结构,从旧的框架中走出来,突出数学思想这条主线,才有可能使学生知其然,更知其所以然,提高学生学习数学的主动性和积极性,使之学到的知识“充满活力”。

教学的对策数学思想方法蕴含于数学基础知识中,相对来说,它是隐性的、抽象的。为了更好地完成数学思想方法的教学,数学教师要具备较高的数学思想方法素养。认真学习、掌握数学思想方法的内容和实质,明确数学思想方法在整个数学发展中的地位,努力把初等数学、高等数学和现代数学的基本思想方法有机地联系起来。笔者认为可从以下三个方面入手,进行数学思想方法的教学。

3.1要重视数学史和数学思想史的介绍。

数学史是一部追求真理的历史,在追求真理的征途中,前人不断探索、不断完善,最终形成高度抽象严谨的数学概念,其中所蕴涵的数学思想和数学方法是绝好实例。在教学中应交代清楚数学知识的背景和出处,使学生感受和了解原始创新过程。

例如,在极限的概念教学中,通过介绍历史上刘徽为求圆周率而产生的“割圆术”、阿基米德用“穷竭法”求出抛物线弓形的面积等数学问题引入概念,学生一般都能认识到极限是一种研究变量的变化趋势的数学方法,它产生于求实际问题的精确解。这不仅激发了学生的学习兴趣,而且对于随后介绍数列极限的定义也大有益处。教师还可以由此给出悬念:同学们在学了定积分的应用之后,可以证明阿基米德所作解答是正确的。

3.2要倡导“问题解决”的教学模式。

数学中的概念、法则、性质、公式、公理、定理通常称为数学表层知识。数学教材主要记述的就是数学表层知识,深入分析这些表层知识,便可以发现蕴涵在其中的极为丰富的深层知识,这就是贯穿于其中的数学思想方法和模式等。数学深层知识是数学的本质和精髓,掌握基本的数学思想方法能使数学更易于理解和记忆,是学会学习、发展创新的'前提。作为数学教师,在教学时不能就知识论知识,就书本论书本,应引导学生去领悟内容中蕴含的深邃思想和巧妙方法。

3.2.1重视论证的结论。

从应用的角度讲,对于高职学生而言需要的往往不是论证的过程,而是它的结论。因此我们主张,在高等数学教学中,应淡化严格的数学论证,强化几何说明,重视直观、形象的理解,但这并非是将定理的推证与公式的推导全盘舍弃。若是推证、推导中包含重要的数学思想和方法,教师应引导学生大胆猜想,运用归纳法和类比的思想积极探索,力求形成“问题情境―建立模型―解释、应用与拓展”的基本教学模式,以大众化、生活化的方式反映重要的现代数学观念和数学思想方法。

3.2.2展示思维的过程。

学生的思维往往是通过模仿教师的思路逐渐形成的,“让学生看到思维的过程”是提高学生学习积极性、促进学生思维能力发展的有效措施。让学生看到思维的过程,意在使学生能从教师的分析中懂得怎样去变更问题、怎样引入辅助问题、怎样进行联想类比、怎样迂回障碍,使之柳暗花明,得到成功的喜悦,从而逐渐养成自觉思维的习惯。

数学思想方法主要包括:化归思想方法、数形结合思想方法、构造思想方法、类比思想方法、极限的思想方法、积分的思想方法、归纳与猜想、函数与方程思想方法等等。高职数学教学中应重点渗透以下两种类型的数学思想方法:3.3.1宏观型的数学思想方法如抽象概括、化归、数学模型、数形结合,方程与函数,积分等等。

如分类、类比,归纳,演绎,等等。

4结论。

数学思想方法对数学的认识结构起着重要的导向作用,是将知识转化为能力的杠杆,由于数学思想方法比其它数学知识更抽象、更概括,学生一般难以在教材中独立获得,只有通过教师在教学中的引导和点拨,才能使学生真正感受到数学思想方法俯瞰全局、举一反三、事半功倍的作用。

总之,“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。

参考文献。

文档为doc格式。

数学思想方法论论文篇七

数学思想方法是初中数学教学的重要组成部分,是比数学知识传授更为重要的教学内容.有人把数学思想方法称之为数学教学中的一颗明珠,因为知识的作用是有限的,而方法的作用往往能够涉及整个数学领域.正是因为其有着广泛的普遍适用性,有着超越知识层面,并且能够让人们在数学探究的征途上从未知到已知的可能性,因此在新课程改革中被赋予了相当的重要性.

事实上,新颁布的《义务教育数学课程标准》,再一次将基本思想写入其中.当然,令人注目的是我们初中数学还进一步提出了“基本数学活动经验”——其与数学思想方法也有着密切的关系.这样就将传统上的“双基”扩展为了“四基”,使得初中数学教学的内涵与外延都得到了进一步的丰富.

其一是数学方法.顾名思义,这一类的思想方法与数学内容有着密切的关系,也可以认为是离开了数学知识就谈不上这些方法的运用.比如解方程中常常用到的配方法,其是通过将一元二次方程配成完全平方式,以得到一元二次方程的根的方法,其经典运用是一元二次方程求根公式的得出;再如换元法、消元法,前者是指把方程中的某个因式看成一个整体,然后用另一个变量去代替它,从而使问题得到解决.后者是指通过加减、代入等方法,使得方程中的未知数变少的方法.在复杂方程中运用这些方法可以化难为易.再如几何中的辅助线方法也是解决许多几何难题的灵丹妙药.

其二是普遍适用性的科学方法.例如我们数学中常用的归纳法,就有完全归纳法和不完全归纳法两种,数学上的很多规律其实最初都来自于不完全归纳法,因此在探究类的知识发生过程中,都可以用不完全归纳法来进行一些规律的猜想.再如类比、反证等方法,也是初中数学常用的方法,运用这些方法的最大好处是,可以让学生领略到在初中数学中进行逻辑推理的力量与美感.根据笔者的不完全调查,学生在进行推理后如果能够成功地解决一个数学难题,其心情是十分喜悦的,而最大的感受就是通过一环套一环的推理,能够顺利地由已知抵达未知.

其三就是我们常说的数学思想.我国当代数学教育专家郑毓信、张奠宙等人特别注重数学思想在初中教学中的渗透,多次著文要加强数学思想方法的教学.众所周知,数学思想与数学哲学有着密不可分的关系,很多数学家本身也是哲学家.因此,学好数学思想可以有效地培养哲学意识,从而让学生变得更为聪明.

例如典型的建模思想,其是用数学的符号和语言,将遇到的问题表达成数学表达式,于是就建成了一个数学模型,再通过对模型的分析与计算得到相应的结果,并用结果来解释实际问题,并接受实际的检验.一旦学生熟悉了这种数学思想并能熟练运用,将是初中数学教学的一个重大成功.

数学思想方法论论文篇八

新课程标准与考试说明都没有明确指出对“二次函数的平移”的要求,这部分知识属于二次函数与平移两个知识点的交叉部分,属于平移变换在二次函数中的应用。

在教学过程()中,老师没有“耽误时间”,在没有描点画图的情况下,直接给出二次函数平移的规律,即口诀“左上加,右下减,左右内,上下外”。具体说,针对二次函数,左加右减变括号内的,上加下减变括号外的。并且借2道中考题详细解释了二次函数的平移的口诀,最终学生可以独立完成其它几道老师布置的中考题,准确率达到100%。在后面研究函数的性质时学生不会通过函数的图象分析函数的增减性及最值问题。

生硬给出函数的平移的口诀,的确可以缩短学生的思考路线,避免了学生走弯路。但是同时,学生探索的过程也被抹杀了,学生思考的空间也被挤掉了,有两个可以在这里渗透的'重要的思想方法也被忽视了。所以学生不是越学越聪明,而是越学越呆板。我们完全可以借助函数的平移这个知识点为载体,渗透两个数学思想,即“数形结合思想”与“化归思想”。为此应修改如下:

(一)学生在课下用描点法在同一平面直角坐标系上画出图象。课堂上师生首先共同订正,然后学生在教师的要求下通过比较,发现各函数之间的联系,做出正确的判断,最终发现图形平移的规律。教师通过多媒体演示图象空间位置的变化,印证学生的.看法。同时可建立下面的知识结构图,让学生以填空的形式完成。

这样处理,三次体现了数形结合思想,学生在观察自己所作图象时会与具体的数、进行比较;教师运用多媒体演示时,学生在印证自己的猜想的过程中会第二次进行数形结合;在教师展示的空间结构图中,学生潜移默化的再次体会到数形结合。

几何图形直观,能够帮助我们正确理解概念和有关性质,它研究的对象是形。代数研究的对象是数.数形结合是研究数学的一个重要观点,是解题的一个有效途径,用数形结合解题,直观,便于发现问题,启发思路,有助于培养学生综合运用数学知识来解决具体问题的能力。这也是我们学习习近平面直角坐标系与在平面直角坐标系上描点绘制函数的原因。在此基础上,如果老师要求同学总结规律,老师再加工得到口诀顺理成章。此时教师如再做一个引申,“口诀可以推广,在初中范围内的一次函数(包括正比例函数)、二次函数(顶点式)、反比例函数的平移,以及在高中范围内的指数函数、对数函数、幂函数的平移也都可以由这个口诀解决。”学生也会在此处更上一层楼。值得一提的是,在后续学习过程中,针对二次函数的一般式要先转化为二次函数的顶点式在考虑平移。

(二)顶点法。由于平移时,图象上的各点都向相同方向移动同样的距离,所以二次函数的平移可以考虑特殊点(特别是顶点)的平移变化。通过顶点的变化(具体看顶点横、纵坐标的变化)来判断一个函数的变化,即“一叶知秋”。

这样处理,体现了划归思想,即一般化特殊,特殊化思想方法的一般模式是:在许多数学问题中,由于抽象、概括程度较高,直接发现或改正这些性质往往感到困难,这时,可以先试探它的特殊、局部情况的特性,从中发现规律和解答的方法。如四边形内角和的求法(未整理归纳出内角和公式时)。教师在此对特殊化思想作一介绍也是合适的。而且教师可以根据学生情况作如下引申:顶点法可推广至分析函数的多种变换,如翻折与旋转。

在另一个班级的教学过程()中,笔者按照这个思路教学,学生不但对本知识点处理得比较好,而且在后面学习函数的性质如增减性与最值问题时学生也能较好的掌握。

数学思想方法论论文篇九

小学生年纪比较小,他们还不能专注于学习保持探索状态,所以小学数学阶段的教学一定要在进行渗透数学思想方法的时候注意结合一些有趣的案例,并采用一些巧妙的方式让学生接受。

2.1在课程中发掘数学思想:

很多数学思想都是存在于一些不太瞩目的章节中,因此教师在备课的时候一定要仔细阅读教材,将教材中隐藏的知识点挖掘出来进行排列组合,组成一个完整的知识点体系。在进行授课的过程中,教师要注意在提问、例题的讲解、习题训练和归纳总结,一定要注意教学方式,进行数学思想方法的渗透。比如在讲解3双球鞋和12双凉鞋的金额是相同的,买2双球鞋和8双凉鞋的价钱是900元,那么球鞋和凉鞋分别多少钱一双?就可以利用已知条件去推导出来买四双球鞋需要900元,然后就能用8双凉鞋代替两双球鞋,这样就能利用转化的思想得到问题的答案。

2.2举一反三的学习方式:

学生通过在学习的过程中,利用曾经解决问题的方法解决了一个新的问题,这就是举一反三的能力,也被称为是“逆向思维”。学生在进行逆向思维的过程中,会对自己曾经学过的知识进行一个捋顺,并且从中得到新的认识,可能会对所学的知识有新的灵感和理解,并且在解题过程中有新的方法,让学习变得更加轻松,所以培养学生“举一反三”的能力十分重要。在给小学生进行“逆向思维”的时候,一定要考虑小学生的认知特点,因为小学生年纪比较小,所以首先要培养学生的踏实性,踏实的回忆才能帮助学生在回想的时候产生新的解题灵感并且平心静气对小学生未来的性格养成也是有着长远的意义的;正确引导学生掌握如何学习数学的方法,要有记忆解题步骤的能力,并且从步骤中去发现问题的内涵,独立思考在解决问题的过程中用了什么方法和思路,这样就能让学生在遇到问题后可以明确的想到运用何种解题思维和路径,并且还能的得到进一步的感悟[3]。

2.3进行知识的归纳和汇总:

小学阶段的数学课程时开发小学生形象思维的重要节点,因此如何让小学生在脑海中架构一个完整的数学体系十分重要。经常进行知识的归纳和汇总对于学生的记忆是十分重要的,很多学生在学习一大块数学知识后,老师都会组织学生进行巩固训练,让学生可以巩固知识并且在大脑中形成知识结构。数学思想方法有时候会比数学成绩更重要,一种数学思想方法可能会解答不同种类的问题,蕴含着不同的数学思想方法;一种数学思想方法也可以解决不同的数学问题,这就体现了数学这一学科内在蕴含的逻辑关系。

3结语。

总而言之,在小学数学中渗透数学思想方法是可以提高小学生数学能力的一个重要因素,教师一定要在熟读教材后一定要注意总结书中的数学知识,并且用一些有助于学生接受的教学方式,逐步渗透给学生归纳、类比等数学思想方法。小学阶段是学生培养形象思维和逻辑思维的重要节点,所以教师在小学教学中渗透数学思想方法十分重要。

参考文献。

全文阅读已结束,如果需要下载本文请点击

下载此文档
a.付费复制
付费获得该文章复制权限
特价:2.99元 10元
微信扫码支付
b.包月复制
付费后30天内不限量复制
特价:6.66元 10元
微信扫码支付
联系客服