在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
中学数学几何画板课件篇一
摘要:随着科技的进步,几何画板成为数学课堂中一种非常重要的辅助教学手段,这在很大程度上提高了课堂教学效果。本文结合初中数学教学实践,对几何画板在课堂教学中的应用进行了探索研究,提出了几点教学建议。
关键词:初中数学;几何画板;应用
几何画板作为一种辅助教学工具,以其自身的优势在数学课堂中发挥了积极的作用。本文结合教学实践,对几何画板在初中数学教学中的应用进行了探究。
一、巧妙运用几何画板,激发学生的参与兴趣
在传统几何教学中,一般都是教师在黑板上画出一个几何图形,然后通过推理、验证、在黑板上画线等方式,来验证边、角、线段之间的关系,这样的过程实际上是让学生被动接受知识的过程,没有真正调动学生的主动性,更无法在学生脑海中形成直观、生动的印象,只能提高几何知识的抽象性,让学生对几何敬而远之,极大地压制了学生的学习兴趣。例如,在教学《图形的旋转》时,其中对于旋转性质的探究,有些教师先让学生结合教材内容,自主动手操作:先在硬纸片上挖出一个三角形的小洞,再挖一个小洞作为旋转的中心,然后在硬纸板下放一张白纸。第一次挖出的三角形为△abc,围绕中心挖掉的三角形为△a′b′c′,之后再移开硬纸板,此时要求学生探究线段oa与oa′之间的`关系?∠aoa′与∠bob′之间的关系?△abc与△a′b′c′的形状与大小有什么关系?由于学生是在自主动手之后再进行度量探究的,所以中间可能会存在一定误差,很多学生会对探究结论产生怀疑。为了解决这一问题,教师可以利用电子白板与几何画板软件,在课堂上进行演示,先是用三角形工具构造一个三角形△abc,再画出一个点o,将△abc围绕点o旋转任意角度得出另外一个三角形△a′b′c′,之后借助度量工具将线段长度和角的度数度量出来,最后引导学生观察比较,对旋转的性质进行总结归纳,最后达到预期的教学目标。
二、精确绘制几何图形,充分展示几何内涵
由于几何画板所做出的图形具有很强的动态性,并且能够在运动过程中保持几何各个要素之间的精确关系,并且对数学知识和本质内涵进行精确的表达,所以教师要不断提高自身的信息技术素养,善于运用信息技术实施教学,全面提高课堂教学效率。例如,在教学二次函数时,在传统教学中,教师为了让学生掌握二次函数的顶点、开口方向、对称轴等要素的变化,需要黑板上画出抛物线的图像,并进行理论方面的讲解,还要画出各种不同的交叉图形。但是由于图形的抽象性和静态化,使得学生不能很好的理解与消化。此时,如果借助多媒体技术进行演示,则可以化抽象为形象,化静态为动态,用动态图形将抛物线形状随着系数的变化而变化的情况清晰呈现出来,从而降低知识的难度。同时,还可以让学生自主操作,这样不但可以激发学生浓厚的学习兴趣,而且可以开发学生的智力,让学生经历知识的形成过程,加深学生对知识的印象,提高学生对数学知识的应用能力。
三、引入数形结合思想,培养学生的空间想象能力
我国著名数学家华罗庚曾经说过:“数缺形时少直觉,形缺数时难入微。”数形结合思想是一种非常重要的学习思想,在众多数学思想方法中,数形结合为重中之重,无论在函数部分还是几何部分都有着非常重要的体现。在传统教学中,教师往往利用黑板作图法实施数形结合思想的导入,但是黑板作图呆板无趣,难以激发学生的学习兴趣。所以在信息技术背景下,教师可以运用几何画板,为学生提供充分展示数形结合思想的平台,让学生产生耳目一新之感。运用几何画板,可以测量各种数值,展示各种函数运算。当图形发生变化时,可以将与之相对应的数据展现在学生面前,这样的教学方法所取得的效果是传统教学模式无法比拟的。借助几何画板可以为数形结合思想提供便捷通道,不但能够绘制图形,还能提供动画模型,为图形的变化增加动感因素,增强知识的直观性和形象性,便于学生找到解决方法的有效途径。例如,在解决“二次函数y=ax2+bx+c的图像”的问题时,教师可以借助几何画板向学生说明y=ax2、y=ax2+k、y=a(x-h)2、y=a(x-h)2+k等函数图像之间的关系,帮助学生顺利解决疑惑与问题。
四、加强数学实验教学,鼓励学生自主研究
几何画板是一种简单易学的操作软件,教师可以利用空闲时间教会学生使用几何画板,让学生在课堂上自己动手操作,并在操作过程中观察、发现、感受、验证,促使学生在“做中学”,以激发学生的学习兴趣,提高学生的学习效率。为此,教师要积极打造适合进行实验的环境,加强数学实验教学,引导学生参与其中,激发学生的自主意识,提高学生的实践能力。在现行数学教材中,几乎每个章节都设置了数学实验,而数学实验则需要学生充分发挥自身的主观能动性,提高自身的动手能力。例如,先用几何画板画出一个任意三角形,再画出三角形的三条中线,并说出其中的规律,之后再拖动三角形其中一个顶点随意改变三角形的形状,看看这个规律是否发生改变。通过自主动手探究的过程,可以激发学生的自主意识,提高学生的观察能力和总结能力,让学生在研究过程中找到乐趣,树立学生的自信心,满足学生的成就感。总之,作为初中数学教师,必须要从思想上认识到几何画板的优势和作用,并熟练掌握几何画板的操作应用,根据数学教学内容的实际需要和学生的实际情况,合理有效地应用几何画板,提高初中数学教学的效果,促进学生更好地掌握和应用所学的数学知识,实现课堂教学目标。
参考文献:
[1]孙云飞.浅谈几何画板在函数教学中的应用[j].中国教育信息化,(8).
[2]胡广斌.巧借几何画板提高学生学数学的兴趣[j].改革与开放,2012(14).
[3]吴红军.“几何画板”在初中代数教学中应用例析[j].理科考试研究,(6).
[4]王洁.几何画板在数学课堂上的应用实例[j].新课程学习:中,(12).
[5]徐东.“平移”的教学分析与教学策略——用几何画板优化教学[j].数学教学通讯,2014(1).
中学数学几何画板课件篇二
几何画板初中数学课件
一、几何画板应用于初中数学教学的优势
几何画板的应用最早由美国兴起,我国在意识到其对数学教学方面的作用后,即将其引入到初中教学中,其独有的优势使得传统初中数学教学中的弊端得以优化,具体可以归纳为以下几个方面:1.将抽象具体化,其形象生动的表现形式,可以将抽象的数学公式展现在学生眼前,如此一来学生即可以提升课堂学习效率,该优势在几何知识方面的作用尤为显著,使得难教难懂的几何知识变得易于理解;2.极具动态感觉,该教学环境的灵活性十足,其可以根据点、线、面不同的特征组成形式各样的几何图形,将数学规律进行动态演示,同时学生也可以根据自身需求拖动、改变几何图形,此种学习方式更加利于开展自主学习,另外,动手操作相较于教师讲解更能促进学生思维能力的提升。
二、几何画板优化初中数学教学的案例分析
(一)函数及图像
函数是初中数学中较为重要的知识,并且对于从未接触过函数的学生而言,若单单依靠教师讲解,很难使学生理解其实际含义,而使用几何画板则不会存在此问题。如在区分y=x+4与y=-x+4时,教师即可以引导学生利用几何画板来帮助自身理解,其所显示的图形中可以看出,y=x+4中,x的值越大,y值越大,可见其为单调递增函数;而y=-x+4中,x的值越大,y值越小,因此此种函数为单调递减函数。学生可以轻易的发现函数单调性的特性,并迅速找到区别其递增、递减的最佳标志,即观察系数,当x前的系数为负,其为单调递减,为正时则为单调递增,另外,当y=-x+4与y=x+4相交时,会出现垂直现象,以上种种知识在几何画板中的显示十分明显,便于学生理解。
(二)勾股定理
勾股定理知识虽然不似函数般难懂,但学生自身理解能力不同,对于数学知识的兴趣程度也有所差异,因此教师很难使学生保持在同一水平,但使用几何画板可以避免或减少此种情况发生,学生在自行操作几何画板的.过程中,能够感受到知识的变化,也能感受到自身对知识的理解能力有了很大提升,因此可以增加学生的信心。如在n堂中,教师可以引导学生绘图验证勾股定理,首先绘制三角形,其次将两个直边标为a,b,斜边标为c,然后分别以三个边为基点绘制正方形,oa,ob,oc,最后通过计算即能够发现勾股定理的含义,即oa面积+ob面积=oc的面积。
(三)数学公式
数学公式在数学学科中极为重要,甚至可以说其是学好初中数学的前提,然而由于数学公式往往需要学生死记硬背,很多学生觉得十分枯燥,并且人的记忆时间有限,此种记忆难以维持很长时间,当学习更多知识时会慢慢将其淡忘,对于今后数学公式的运用,已经今后的数学学习而言极为不利。而几何画板的优势使得教师可以将公式内容形象的演示出来,学生可以直观发现公式的规律,同时掌握更多科学依据,此种由理解促进记忆的方式更有意义。如在学习概率知识时,其中包含了许多形式的公式,如排列公式、组合公式或是加法、乘法概率等,此种知识若学生只专注于记忆,却忽略了理解,则很难在实际应用中迅速解答相关习题,几何画板内容的多样性在此方面的作用可以有更好的体现。
三、结语
综上所述,研究关于几何画板优化初中数学教学的案例分析方面的内容,具有十分重要的意义,其不仅关系到我国初中学子的数学成绩,也与我国教育事业发展息息相关。不难发现,使用几何画板可以丰富课堂教学方式,也能充分引起学生学习数学的兴趣,便于学生理解更深一层的数学知识,此种新型教学环境所产生的作用是前所未有的,但不可否认的是,其在实际应用中依然会暴露出些许问题,因此相关机构和人员应加强对此方面的研究,使其能够更加完善。
中学数学几何画板课件篇三
教案
课 题:几何画板简介
教学目标:1)通过几何画板课件演示展示其魅力激起兴趣
2)了解几何画板初步操作
教学重点:让学生了解几何画板的工作界面
教学难点:能用几何画板将三角形分成四等份,并用几何画板验证。 教学过程:
一、概述几何画板
几何画板是专门为数学学习与教学需要而设计的软件。有人说它是电子圆规,有人说它是绘图仪,有人说它是数学实验室。它号称二十一世纪的动态几何。它可帮助我们理解数学,动态地表达数量关系,并可设计出许多有用或有趣的作品。
二、几何画板作品展示
三、几何画板简介
1)启动
开始|程序|几何画板|几何画板。启动几何画板后将出现 菜单、工具、 画板。工具(从上到下) 选择 、画点、画圆 、画线、 文本 、对象信息、 脚本工具目录。
2)操作初步
1、文件
新画板 打开一个新的空白画板。
新脚本 打开一个新的空白脚本窗口。用于录制画板的画图过程。 打开 打开一个已存在的画板文件(.gsp)或脚本文件(.gss)。
保存 [保存当前画板窗口画板文件或脚本窗口脚本文件],路径+文件名,确认。
打印预览
打印
退出
2、 选择 几何画板的操作都是先选定,后操作。
选工具(选择 画点 画圆 画线 文本 对象信息 脚本工具目录) 单击:工具选项。
选选择方式 移到选择按左键不放→平移/旋转/缩放;拖曳到平移/旋转/缩放;放→选定。
功能:移动选定的目标按平移/旋转/缩放 方式移动。
选一个目标 鼠标对准画板中的`目标(点、线、圆等),指针变为横向箭头,单击。
选两个以上目标 法一 第二个及以后,shift+单击。
选两个以上目标 法二 空白处拖曳→虚框;虚框中的目标被选。 选角 选三点:第一、第三点:角两边上的点;第二点:顶点。 不选 单击:空白处。
从多个选中的目标中不选一个 shift+单击。
选目标的父母和子女 选定,编辑|选择父母/或选择子女。
选所有 编辑|选择所有。
选画点/画圆...,编辑|选择所有点/圆...。
3、删除
删除目标 选目标;del键(注:同时删除子女目标)。
复原一步 ctrl+z = 编辑|复原。
画板变成空白画板 shift+ctrl+z = shift+编辑|复原。
4、显示
线类型 设置选定的线/轨迹 为 粗线/细线/虚线。应用 使对象更突出。 颜色 设置选定的图形的颜色。应用 使对象更突出。
字号/字型 设置选定的标注、符号、测算等文字的字号和字型。
字体 设置选定的标注、符号、测算等文字的字体。
显示/隐藏 显示/隐藏 选定的目标(ctrl+h)。
显示所有隐藏 显示所有的隐藏目标。
显示符号 显示/隐藏 选定目标的符号。
符号选项 更改 符号/符号序列。
轨迹跟踪 设置/消除 选定目标为轨迹跟踪状态。
动画 根据选定的目标条件进行动画运动。
参数设置 角度、弧度、精确度等的设置。
5、对象信息 单击对象信息→?;单击对象→简单信息;双击对象→目标信息对话框。
6、快捷键 隐藏ctrl+h显示符号ctrl+k轨迹跟踪ctrl+t当前目标可操作的内容右键。
(以上简略选讲1、2、3)
四、熟悉几何画板的界面,了解常用工具的用法,
五、把一个三角形分成四等份:
1)用画线工具画一个三形,
2)标注:选文本工具,单击画好的点,用文本工具双击显示的标签,可进行修改。
3)选择“构造”,---“画中点”
六、验证面积相等:
1)按住shift键,选取点。
2)“构造”---“多边形内部”。
3)“测算”---“面积”
七、等分线段:
1)画射线作辅助线。
2)选取一段做标记向量。
3)“变换”---“平移”。
4)“作图”---“平行线”。
用平行线的性质等分线段。
八、画基本图形
1、画点 选画点,单击画板上一点。(并显示标签)
2、画圆 画圆的两种方法及区别。 (设置不同显示方式)
3、选线段/射线/直线 选画线;按左键不放→线段/射线/直线
九、课后反思
在图中标注文本文字,用辅助线把一线段如何分为四等份
中学数学几何画板课件篇四
几何画板数学课件
【教学片段】
1.概念学习
四个顶点都在圆上的的四边形叫圆内接四边形。
2.探讨性质
(1)打开几何画板,任意画⊙o和⊙o的内接四边形abcd。
(2)度量可测量的所有值(圆的半径和四边形的边,内角,对角线,周长,面积,这些值的度量几何画板软件可以自动完成),并观察这些值之间的关系(大小、和差、倍分)。
(3)改变圆的半径大小,这些量有无变化?由(2)观察得出的某些关系有无变化?
(4)移动四边形的顶点,这些量有无变化?由(2)观察得出的某些关系有无变化?
⑹用文字语言表述刚才实验得出来的结论。
3.性质的证明及巩固练习
猜想结论:圆内接四边形的对角互补。
证明猜想:……
【案例分析】
本课例在引导学生得出圆内接四边形的性质时,通过使用几何画板,从而实现了改变圆的半径,移动四边形的顶点等,从而使初中平面几何教学发生了重大的变化,那就是让图形出来说话,充分调动学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣,而且比过去的教学更能够使学生深刻地理解几何。几何画板所特有的,对数学活动过程的展示,对数学细节问题的处理可以使学生体验到用运动的观点来研究图形的思想。
如教材中有这样一个平面几何题“证明:顺次连接四边形四条边的中点,所得的四边形是平行四边形。”对于这个问题,也可以用几何画板进行动态演示,用几何画板来演示一个形状不断变化的四边形,让学生观察它们四条边中点的连线组成一个什么样的特殊四边形。在学生完成猜想和证明过程后,我们进而可提出如下问题:”要使顺次连接四条边的中点所得的四边形是菱形,那么对原来的四边形应有哪些新的要求?如果要使所得的四边形是正方形,还需要有什么新的要求?”通过这些改造,常规题便具有了“开放题”的形式,例题的功能也可更充分地发挥。而通过几何画板的动态演示,也让这个抽象的几何问题变得更直观,更易于理解和学习。
中学数学几何画板课件篇五
1数学教学中如何使用几何画板
在学习兴趣培养中的应用。
很多学生对初中数学的学习缺乏必要的兴趣,对数学课程有着十分明显的厌恶心态。之所以会出现这种情况,与初中数学知识内容的繁琐性、抽象性以及枯燥性有着十分紧密的联系。而为了让学生对数学知识有全新的认知,便需要使用几何画板软件,将一些看起来较为枯燥的数学知识通过全新的方式表现出来,从而获得更加良好的理解。
比如二次函数是初中数学教学中的重难点,很多学生会感到无所适从,为了让学生对二次函数有更加新颖的了解,便可以将函数通过图像的方式,在几何画板中表现出来,如下图所示:
在图一中,表现的是一个二次函数y=ax2+bx+c的相关参数变化情况,从图像中可以非常直观地了解到随着a、b、c三值的变化,函数图像所产生的相应变化,对于学生学习二次函数以及了解其本质有着十分重要的意义。通过这种方式,一方面让学生对枯燥的数学知识重新产生了浓厚的兴趣,另一方面也让教学变得更加规范,几何画板下的二次函数图像要比传统的黑板上作画精确许多。
帮助日常教学活动的进行。
几何画板在初中数学教学中,很多情况下具有不可替代的功能,特别是在一些几何部分的知识教学环节,能够起到很好的教学帮助作用。以初中数学中一个几何体上各条棱的平行与垂直关系为例,在传统的教学过程中,如果缺乏了相应的教辅示范工具,那么学生往往会很难理解教学内容,空间想象力不够丰富的学生甚至完全不能进入学习中。而几何画板则为这种情况提供了非常好的帮助,让教学工作得以顺利开展。如下图便是对正六面体的各条棱空间关系分析:
在图二中,将六面体的各个顶点分别命名为a、b、c、d以及a’、b’、c’、d’,通过几何画板中图形的旋转,将六面体全方位展示在学生面前,学生可以很直观地观察到每一条棱与其他棱之间的空间平行、垂直、异位等关系,从而为后续的进一步教学打下良好的基础。另外,在《图形的翻折运动》、《圆与圆的位置关系》等课程教学中,几何画板所具有的图形运动与转换功能均能够为教学工作带来极大的帮助,让教学的效率得到更大程度的提升。
2数学课堂创新教学
注重学生思维能力的培养,训练创新思维
数学教学既是一种数学知识的传授活动,也是学生数学思维的训练活动。传统的数学教学偏重于前,使学生在数学教学中成为接受前人所发现的数学知识的容器,把知识视为理所当然,不去考虑由来,这极大地限制了学生创新思维的发展。解决这一问题的关键是教育内容的革新,教育观念的更新和教学方法的创新。建构主义学习理论认为,学习不是一个被动吸收,反复练习和强化记忆的过程,而是一个以学生已有知识和经验为基础,通过个体与环境的相互作用,主动建构意义的过程。因此,在数学教学中,应通过对数学符号组合的分析、图形的证明、计算的变化等数学活动,使学生在逻辑思维、抽象思维、对称美欣赏、表象创造、联想变化等方面训练,从而培养学生思维的敏捷性、变通性、直觉性和独创性等创新思维的优良品质。教师不在于把知识的结构告诉学生,而在于通过对数学教材巧安排,对问题妙引导,创设一个良好的思维情境,引导学生发现,探究和总结,帮助学生在走向结论的过程中发现问题,探索规律,习得方法,引导学生主动地从事观察﹑实验﹑猜测﹑验证﹑推理与合作交流。
自主是创新精神的起点,在创造性的教学中应把学生视为主体,通过为学生提供自主发问、讨论交流尝试解决问题的机会,给学生充足自主学习的时间,并及时指导纠正学生“不当”为“探究”,促使学生从一开始就进入创新思维状态中,以探的学习方法,共同得到结论。打破“老师讲,学生听”的常规教学,变传授索者的身份去发现问题,总结规律。通过交流的方式分析问题,解决问题并能进行知识迁移,不仅能将“游离”状态的数学知识点凝结成优化的数学知识结构,而且能使模糊杂乱的数学思想清晰化和条理化,有利于思维的发展,同时还可以获得美好的情感体验。
抓住时机,因势利导,激起学生强烈的求知欲
思维能力的培养是数学教学的核心,把握好激发学生思维发展的时机,是引导学生进行创新思维的关键。我在教学“能被3整除的数的特征”这节课时,首先我问:“同学们,今天我们来做个游戏好吗?”听说做游戏,他们自然高兴极了,说:“老师,做什么游戏?”我说:“这个游戏就是你们随便说出一个数,我不用做除法计算,马上知道它能否被3整除。”学生一听,兴趣来了,兴致勃勃地说了很多数,我把这些数一一写在黑板上,一个一个加以判断。这时学生们对我真是佩服极了,但是也有不相信的,拿过练习本就开始除,结果还是老师说的一样。这时他们急坏了,急切地说:“老师,你是怎么知道的?
你有什么妙法呀!快点教给我们吧!”于是抓住这有利的教学时机,说:“好!这就是我们今天所要学习的能被3整除的数的特征。”学生情绪高昂地学习了新知识。快下课时,又布置了这样的作业,回家后和爸爸妈妈做这个游戏,看他们会怎样说。结果第二天,好多学生都讲了他们的爸爸妈妈表扬他的话。
3打造数学魅力课堂
运用语言、态势、板书等吸引学生注意力,掌握讲课节奏
在课堂教学中,通过语速的快慢、语音的抑扬顿挫、讲课节奏的张弛和语言的幽默来集中学生的注意力,其学习效果是不言而喻的。而恰当地运用态势、表情、手势、动作等把学生的视线吸引过来,给学生以动感,避免长时间不停歇地盯住黑板,也是消除学生疲劳、厌倦的一个有效方法。值得一提的是,在努力活跃课堂气氛的同时,还要注意维持课堂纪律,避免因个别学生违纪而影响了教学效果。而且,教师在上课前应有良好稳定的情绪,尽快进入讲课的角色,才能形成轻松活跃的课堂气氛。
开展评比活动,活跃课堂气氛
在平时自己的课堂上,我还没有意识到开展小组与小组、学生与学生之间的评比活动,对活跃课堂有多么重要。,通过多次听课交流,我知道了:开展评比,可使学生不仅学会合作学习,还会活跃课堂气氛。人人都渴望被表扬。初中学生好胜心强,乐于表现自己,应创造条件,让学生积极参与竞争,在竞争中提高学生对数学学习的兴趣。
提高练习质量,减轻学生负担
在教学过程中,在独立思考、尝试体验这一环节,我通常会安排三个层次的练习,即通过“围绕重点集中练、变换形式灵活练、新旧结合综合练”,将练习带进课堂.通常情况下,一节课的题目要分成适当的几个组,学一组练一组.练习的形式多样,自学、观察、实验、猜想、朗读、讨论、制作等都是必要的练习.通过练习,一方面让学生现场暴露知识和能力的缺陷;另一方面让学生在练习中产生困惑,学生练过之后就迫切希望老师讲解,他们希望知道正确的解题方法和解题思路.通过这种方式获得“成就感”和解决自己的困惑。此时,教师的讲解不宜面面俱到,只需有的放矢,重在点拨。“详讲”“略讲”或“不讲”要合理分配,突出重点。
4培养学生自主学习数学
要培养学生认真完成作业的习惯
作业是学生最基本、最经常的独立学习活动,是学生巩固知识,形成知识技能的主要手段。因此,必须养成认真完成作业的习惯。怎样才能养成此习惯呢?笔者认为应从以下二个方面进行:(1)养成专心作业和独立完成作业的习惯。课堂作业由于有老师督促检查,一般还比较认真,而在家庭作业中常常出现许多不良的习惯。例如,做作业时,做做玩玩,心神不定;拼命赶速度;依赖家长或照抄同学的作业等。这些都严重影响了作业的质量。为此,教师在布置家庭作业时,除对学生提出要求外,还应同家长取得联系,共同督促指导学生认真独立地完成家庭作业。(2)养成认真审题,仔细计算的习惯。审题是正确解题的前提,学生作业中的许多错误往往是没有认真审题造成的。
因此,要教给他们认真审题的方法。对于计算题,先要检查题目里的数字、运算符号有没有抄错,然后确定先算什么、后算什么,有没有简便的方法;对于应用题,特别是复合应用题要多读几遍,弄清已知条件和问题是什么,条件中哪些是直接的,哪些是间接的,再分析问题与条件、条件与条件之间有什么联系,最后列式;对于判断题,要弄清每一个字、词或符号的意义,并同已掌握的知识作比较,以便作判断。审题以后,要仔细地计算。如需打草稿的,草稿也要力求有条理、清楚,以便检查。
要培养学生敢于想的习惯
爱因斯坦说:“提出一个问题往往比解决一个问题更重要。”肯尼思?h?胡佛也说:“整个教学的最终目标是培养学生正确提出问题和回答问题的能力。任何时候都应鼓励学生提问,遗憾的是,提问课中常常是按照教师问学生答的反应模式进行。”这种用提问来代替学生的思维,让学生沿着教师的问题思路,到达知识彼岸,使学生学习始终被教师绑定,扼杀了学习的主动性与创造性。数学是思考性极强的一门学科,在数学教学中,必须使学生积极开动脑筋,乐于思考,勤于思考,善于思考,逐步养成独立思考的习惯。要使学生独立思考,首先,要选好思考的内容。思考内容一般在知识的关键处,通过设计提问的形式出现。
例如,教学分数乘以整数的法则时,可引导学生根据一系列问题阅读课本,并进行思考。如:2/9×3的意义是什么?2/9×3转化成2/9+2/9+2/9后怎样计算?根据是什么?当得到2/9×3=(2×3)/9后,将等式左边的算式与右边的结果比较,想一想,分数乘以整数应怎样计算?这样通过一个个问题,沟通了新旧知识的联系,使学生在教师的指导下,独立地掌握计算法则,培养了独立思考的习惯。为了养成独立思考的习惯,在提供思考内容的同时,还必须给予足够的思考时间。在一般情况下,当老师提出问题后,智力水平较高的同学能很快举手回答,这时为了照顾到中、下生,应该多留一些时间让大家思考,待已有相当多的同学举手后,再根据情况,让不同层次的同学回答。也可让那些没有举手的同学回答,让他们说说怎样想的,有什么困难,以促进他们开动脑筋想问题。不过在提问时,应尽量避免只与个别成绩好的同学对话,而置大多数同学于不顾。并且还要注意调动全班学生的积极性。其次,要鼓励学生质疑问难。因为任何发明创造都是从发现问题、提出问题开始的。如果学生在提问中提出一些离奇的问题,作为教师不应扼杀,而应加强引导、鼓励,并和同学一起分析、讨论。经过独立思考,学生就可能产生新的见解,有了见解就会有交流的愿望,有了交流又可以产生新的思考,从而使学生乐于思考,勤于思考,善于思考,逐步养成独立思考的习惯。
中学数学几何画板课件篇六
几何画板在初中数学教学中的应用论文
摘要:随着科技的进步,几何画板成为数学课堂中一种非常重要的辅助教学手段,这在很大程度上提高了课堂教学效果。本文结合初中数学教学实践,对几何画板在课堂教学中的应用进行了探索研究,提出了几点教学建议。
关键词:初中数学;几何画板;应用
几何画板作为一种辅助教学工具,以其自身的优势在数学课堂中发挥了积极的作用。本文结合教学实践,对几何画板在初中数学教学中的应用进行了探究。
一、巧妙运用几何画板,激发学生的参与兴趣
在传统几何教学中,一般都是教师在黑板上画出一个几何图形,然后通过推理、验证、在黑板上画线等方式,来验证边、角、线段之间的关系,这样的过程实际上是让学生被动接受知识的过程,没有真正调动学生的主动性,更无法在学生脑海中形成直观、生动的印象,只能提高几何知识的抽象性,让学生对几何敬而远之,极大地压制了学生的学习兴趣。
二、精确绘制几何图形,充分展示几何内涵
由于几何画板所做出的图形具有很强的动态性,并且能够在运动过程中保持几何各个要素之间的精确关系,并且对数学知识和本质内涵进行精确的表达,所以教师要不断提高自身的信息技术素养,善于运用信息技术实施教学,全面提高课堂教学效率。例如,在教学二次函数时,在传统教学中,教师为了让学生掌握二次函数的顶点、开口方向、对称轴等要素的变化,需要黑板上画出抛物线的图像,并进行理论方面的讲解,还要画出各种不同的交叉图形。但是由于图形的抽象性和静态化,使得学生不能很好的理解与消化。此时,如果借助多媒体技术进行演示,则可以化抽象为形象,化静态为动态,用动态图形将抛物线形状随着系数的变化而变化的情况清晰呈现出来,从而降低知识的难度。同时,还可以让学生自主操作,这样不但可以激发学生浓厚的学习兴趣,而且可以开发学生的智力,让学生经历知识的形成过程,加深学生对知识的印象,提高学生对数学知识的应用能力。
三、引入数形结合思想,培养学生的空间想象能力
我国著名数学家华罗庚曾经说过:“数缺形时少直觉,形缺数时难入微。”数形结合思想是一种非常重要的学习思想,在众多数学思想方法中,数形结合为重中之重,无论在函数部分还是几何部分都有着非常重要的体现。在传统教学中,教师往往利用黑板作图法实施数形结合思想的导入,但是黑板作图呆板无趣,难以激发学生的学习兴趣。所以在信息技术背景下,教师可以运用几何画板,为学生提供充分展示数形结合思想的平台,让学生产生耳目一新之感。运用几何画板,可以测量各种数值,展示各种函数运算。当图形发生变化时,可以将与之相对应的数据展现在学生面前,这样的教学方法所取得的效果是传统教学模式无法比拟的。借助几何画板可以为数形结合思想提供便捷通道,不但能够绘制图形,还能提供动画模型,为图形的变化增加动感因素,增强知识的直观性和形象性,便于学生找到解决方法的有效途径。
四、加强数学实验教学,鼓励学生自主研究
几何画板是一种简单易学的操作软件,教师可以利用空闲时间教会学生使用几何画板,让学生在课堂上自己动手操作,并在操作过程中观察、发现、感受、验证,促使学生在“做中学”,以激发学生的学习兴趣,提高学生的学习效率。为此,教师要积极打造适合进行实验的环境,加强数学实验教学,引导学生参与其中,激发学生的自主意识,提高学生的实践能力。在现行数学教材中,几乎每个章节都设置了数学实验,而数学实验则需要学生充分发挥自身的主观能动性,提高自身的动手能力。例如,先用几何画板画出一个任意三角形,再画出三角形的三条中线,并说出其中的规律,之后再拖动三角形其中一个顶点随意改变三角形的形状,看看这个规律是否发生改变。通过自主动手探究的过程,可以激发学生的自主意识,提高学生的观察能力和总结能力,让学生在研究过程中找到乐趣,树立学生的自信心,满足学生的成就感。总之,作为初中数学教师,必须要从思想上认识到几何画板的优势和作用,并熟练掌握几何画板的操作应用,根据数学教学内容的实际需要和学生的实际情况,合理有效地应用几何画板,提高初中数学教学的效果,促进学生更好地掌握和应用所学的数学知识,实现课堂教学目标。
参考文献:
[1]孙云飞.浅谈几何画板在函数教学中的应用[j].中国教育信息化,(8).
[2]胡广斌.巧借几何画板提高学生学数学的兴趣[j].改革与开放,2012(14).
[3]吴红军.“几何画板”在初中代数教学中应用例析[j].理科考试研究,(6).
[4]王洁.几何画板在数学课堂上的应用实例[j].新课程学习:中,(12).
[5]徐东.“平移”的教学分析与教学策略――用几何画板优化教学[j].数学教学通讯,2014(1).
中学数学几何画板课件篇七
【教学内容】
23.2.2 中心对称图形
【教材分析】
平移、旋转、翻折是几何图形的三种基本运动。本章研究这三种运动的基本特征及简单的运用问题,采取以生活实例为背景,从操作到表象到概念(性质)再到简单应用为主线,引导学生通过操作实验获得知识。通过本章学习,学生将体会运用运动的观点看待静止的几何图形,感知初步的几何变换思想,为今后研究图形的全等和相似奠定基础。
【学生分析】
根据我们九年级学生的认知水平,由于刚学习了中心对称图形,在理解两个图形关于某一点中心对称的意义上,会与前者概念混淆。为了帮助学生建立中心对称与中心对称图形的区别与联系,一要加强直观性和现实性,合理使用多媒体;二要充分利用学生已有的知识和经验;三要提倡学生体验,注重操作实践;四要热情鼓励、耐心指导。
【教学目标】
1、知识与技能:经历两个图形关于某点形成中心对称的过程,初步掌握中心对称的概念,并能建立中心对称与中心对称图形的区别与联系。
2、过程与方法:理解两个图形关于某点成中心对称的意义,能找到两个成中心对称图形的对称中心。
3、情感态度与价值观:找到两个成中心对称图形的对称中心、对应点、对应线段、对应角。
【几何画板设计意图、操作设想】
设计操作1:设计一个实际操作问题形象引进中心对称。
设计操作2:直观感受两个三角形关于某点成中心对称,便于找对称中心、对应点、对应角、对应线段。
设计操作3:动态演示点、线、面的作图过程。
设计操作4:找对称中心时隐去部分线段,能小结出 “寻找对称中心,只需分别联结两对对应点”。
【教学过程】
一、 情景引入 概念形成
概念形成
几何画板教学设计案例――中心对称图形
给出上图。
提问:如果把这张图形看作一个整体,它可以绕着点o整体旋转。它是我们近期学过的哪种图形?(你能说说什么叫中心对称图形吗?) 中心对称图形:如果把一个图形绕着一个定点旋转180°后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
几何画板教学设计案例――中心对称图形 几何画板教学设计案例――中心对称图形
操作:现在将这个图形看作两个图形,红色图形绕着点o旋转,能与绿色图形完全重合。
引出概念:
中心对称:把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,我们就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
(课题)11.4 中心对称
提问:请对照概念,说说中心对称与中心对称图形的区别与联系?
联系:如果把中心对称图形的两部分分别看作两个图形,那么它们成中心对称;如果把中心对称的两个图形看作一个整体,那么它成为中心对称图形。
二、应用探究
操作:请看,两个三角形是否关于点o成中心对称?
几何画板教学设计案例――中心对称图形
1、观察:这两个三角形关于点o成中心对称,请找出它们之间的对应点,对应线段,对应角,对称中心。
几何画板教学设计案例――中心对称图形
强调:如果两个图形关于某一点中心对称,那么其中一个图形中任何一点关于某点的对称点都在另一个图形上。
1、思考:对称中心点o的位置有什么特点?
探究中心对称性质
性质:
对称中心平分每一组对应点的连线段。
例题1:
按照下列要求画出图形:
(1)画出线段ab关于点o的中心对称的线段。(教师板演)
(2)画出三角形abc关于点o的中心对称的图形。(口述)
适时小结:
画一个图形关于某点的对称图形的画法是先画出图形中的几个特殊点(如多边形的顶点、圆的圆心等)关于某点的对称点,然后再顺次联结有关对称点即可。
例题2:
1、画出如图所示的四边形abcd关于点o的中心对称的图形。
几何画板教学设计案例――中心对称图形
2、隐去对应点的连线段后,你能找到它们的对称中心吗?
几何画板教学设计案例――中心对称图形
适时小结:
寻找对称中心,只需分别联结两对对应点,所得两条线段的交点就是对称中心。(两条直线相交,且只有一个交点。)
三、练习反馈
1、画出下列成中心对称的图形中的对称中心:
几何画板教学设计案例――中心对称图形几何画板教学设计案例――中心对称图形
2、把△abc绕着边ab的中点o旋转180°,画出旋转后的图形:
几何画板教学设计案例――中心对称图形
提问:把△abc绕着边ab的中点o旋转180°旋转后的图形是小学学过的什么图形?
3、画出如图所示的旗子关于点o对称的图形。
几何画板教学设计案例――中心对称图形
四、课堂小结
知识小结:
1、两个图形关于某点成中心对称的概念。
2、会用性质画已知图形关于某一点对称的图形。
3、会找对称中心。
4、认识中心对称与中心对称图形的区别与联系。
五、布置作业:
习题74页 1、2题
[小学数学几何画板课件]
中学数学几何画板课件篇八
一、善于利用“变换”命令
“变换”是几何画板中的重要命令,这里的技巧是非常多的,要变换,就要有所依据,所以在实施变换之前,一定要先“标记”,可以标记中心,可以标记向量,可以标记比等等,选定要变换的图形,按照标记,进行相应的变换。其他软件的变换很多都不符合数学的要求,有时我们需要复制一个图形,并且要求复制的图形会随着原始图形的变化而变化,这一点绝对不是ctrl+c和ctrl+v所能实现。如下图就是利用变换命令制作的等于已知角的另一个角。
二、颜色填充技巧
在很多的绘图软件中都提供了颜色填充的工具,在几何画板中却没有在工具栏中提供这一工具,其实这是它的特点,因为几何画板中的图形是要变动的,填充颜色的部分也要随之而变化。
首先,要选定添加颜色的图形,如图形是一个圆,则选择菜单“构造”中的“圆内部”;如图形是一个多边形,则选择菜单“构造”中的“多边形内部”;如图形是一段弧,选择菜单“构造”中的“扇形内部或弓形内部”。这里要说明一点,为多边形添加颜色,一定要选择多边形的顶点,选择边是没有用的。
三、绘制点的方法
前面提到的画点工具,可以画出两种点,一种是自由点,即可以不受任何限制地到处移动的点,还有一种是可以在一定的范围内移动的点,例如,画好一个圆后,在圆上画上一个点,那么这个点只能在这个圆上移动,不能离开此圆。
下面是另外一种点的画法,选择“绘图”中的“绘制点”,在出现的窗口中可以输入要画的点的坐标,在上方有两种选择,一种是“直角坐标系”,选择它就表示该点是在直角坐标系里面;第二种是“极坐标系”,选择它就表示该点是在极坐标系里面。
四、利用数学思想制作基本图形
在数学中,有很多重要的图形,像圆、圆弧、椭圆、双曲线、抛物线等等,在几何画板中如果想使用某些图形,需要我们结合画板的基本功能和数学的有关知识来制作,下图是一个利用几何画板制作的椭圆。
利用“轨迹”命令可以得到下图中的椭圆,其他无用的对象最后可以隐藏起来。其中的数学原理是到两个定点距离之和为一个常数的点的轨迹是椭圆。具体教程可参考:怎样利用椭圆定义构造椭圆。
五、工具栏的使用
几何画板启动之后左边是默认的工具栏,从上至下依次是:选择工具、点工具、圆工具、画线工具、多边形工具、文本标签工具、标记工具、信息工具、自定义工具。要使用工具,只要用鼠标的左键选中相应的工具即可。
当在工作区画出某个图形时,图形都有系统默认的名称,如果看不到,可以用“文本工具”在图形上单击一下即可,再单击,名称消失;如果想修改名称,则双击名称,在出现的窗口中输入新的名称就可以了。另外,在工具栏中有一些隐藏的工具,选择工具有“平移、旋转、缩放”,画线工具有“画线段、画射线、画直线”,调出隐藏工具的方法是左键单击对应按钮,按住左键不放,在右侧出现其他工具,再将鼠标箭头移到想选择的工具上,松开左键即可。
中学数学几何画板课件篇九
几何画板自主学习论文
新大纲明确指出“现代技术的使用将会深刻地影响数学教学内容、方法和目标的改变”,多媒体计算机的出现,网络技术的运用,信息时代的来临,正在给教育带来深刻的变化,教育技术的更新也更新了教学手段、教学方法,而数学学习的一个重要环节是要了解数学背景,获得数学经验,数学经验的获得离不开实际操作。一年多来,我们备课组利用《几何画板》辅助教学,得到了一些体会,在这里与各位老师交流,敬请各位老师赐教。
一、利用《几何画板》,给学生一个“操作数学”的过程
《几何画板》是美国keycurriculumpress公司制作的优秀教育软件,在教师的引导下,《几何画板》可以给学生创造一个实际“操作”几何图形的环境,学生可以任意拖动图形、观察图形、猜测和验证结论,在观察、探索、发现的过程中增加对各种图形的感性认识,形成丰厚的几何经验背景从而更有助于学生对数学的学习和理解,同时《几何画板》还能为学生创造一个进行几何“实验”的环境,有助于发挥学生的主体性、积极性和创造性,充分体现了现代教学的思想。
我们几位数学老师利用课余时间开始认真学习《几何画板》软件,同时对学生进行培训,并在上学期协同高一备课组编写了《几何画板》教学教案,指导学生学习《几何画板》重点培养学生自主探究的学习能力。我们从一开始的教师制作课件进行讲解、演示“二次函数”、“指数函数”、“对数函数”等课本知识,到后来的学生自己利用《几何画板》中的“作图”、“变换”、“度量”、“编辑”等功能,制作具有动感的几何图形和曲线进行自主探究学习,我们感到学生的潜力是无穷的,关键在于挖掘,只有老师努力去挖掘,才能使学生的才智成金。如:对“三角函数图象的变换”、“线性规划”、“圆锥曲线”等内容的教学,我们基本上都是在学生自己利用《几何画板》这样一个动态几何环境进行探究、讨论、总结完成学习任务的。如:学生们对“抛物线的焦点弦”问题的探讨,使我们看到了学生们的自主探究的能力,让我们感到惊喜,也使我们有所反思,我们感到无论你是一位身经百战的老教师,还是一位初上讲台的新秀,都应该记住一句老话,在“学中教”在“教中学”,都会发出“教无止境”的感叹啊!
二、利用《几何画板》,使学生有一个“实验数学”的机会。
经过对学生的培训,让学生们掌握《几何画板》,并且我们利用晚自习时间,在网络教室上课,使学生们直接参与课堂教学,动手在操作中学数学,这是一种新的教学模式,这种教学模式,不再有老师滔滔不绝地讲,代之以学生动手“做数学”,老师负责学习的组织,指导学生研究问题,帮助学生学习,成为学生学习的帮助者,学生成为学习的主人,如我们在网络教室中曾经教过“根据三角函数线作三角函数的图象”以及“椭圆的第二定义”等内容,收到良好的效果。在这,种“实验数学”的教学模式下,不是先有数学的结论。数学的结论来源于学生的制作,对现象的观察,对数据的度量、统计与分析,对各种情况的归纳总结,打破了传统的“教师讲授──模仿练习──强化记忆──测试讲评”的“讲、练、记”教学模式,改变为“问题──实验──观察──收集数据,分析数据──会话、协商──得出结论──证明──再验证──练习──回顾总结”的新模式,课堂上学生自始至终保持着浓厚的学习(研究)兴趣,不再把学习数学看成负担,增强了学好数学的信心,享受着学习数学的乐趣,学生动手操作,使实践能力、观察能力、归纳能力等都得到很好的锻炼,教学效果也比较好。
三、利用《几何画板》,让学生自主开展“研究数学”的活动。
《几何画板》是一个动态讨论问题的工具,对发展学生的思维能力、开发智力、促进素质教育有着不可忽视的作用,用《几何画板》与学生共同探讨问题,探求未知的结论,可以开阔思路,培养能力,提高数学素养。
如:在学习指数函数与对数函数的概念后,有学生问到当a>1时,指数函数y=ax与对数函数y=logax的图象是否会相交的问题,因为从课本及其它很多参考书上所给的在同一坐标系内指数函数y=ax与对数函数y=logax的图象看,当a>1时,似乎是不相交的,正确的结论究竟是怎样?我们又让学生到网络教室利用《几何画板》在同一坐标系作出函数y=ax和y=logax(a>0,且a≠1)的图象,底数a是可以变化的。当01时,结论是怎样的呢?当a>1时,通过拖动线段ab上的点a可以发现当a>1。45时,两函数图象没有交点(见图1)。
电脑屏幕上直观、形象的动态几何环境,通过学生们自己动手操作,得到最终的结果后,同学们都十分兴奋,取得了良好的教学效果。
通过实践我们深深地体会到:《几何画板》在数学教学中具有传统教学方法无法比拟的巨大优势,只要我们能在平常的数学教学中主动、自觉地应用《几何画板》为教学服务,就能更好地培养学生自主学习、探究问题的能力,就能激发和调动学生进行学科学习的积极性,就能把学生从庸俗的电脑游戏中解脱出来,利用电脑为自己的学习服务。《几何画板》作为一个学生自主学习的平台,必将为学生的自主学习、探究学习提供一个广阔的空间,成为培养学生创新思想的实践园地。
中学数学几何画板课件篇十
谈使用几何画板进行数学教学的一点体会的论文
【摘要】:计算机多媒体在教学中的应用,因其固有的优势和特色,使其在教学中显示了强大的生命力,发挥了不可替代的作用。几何画板是一种适合数学教学的简单工具,学生使用几何画板的过程和物理化学中的学生实验类似,可以自己探索。利用几何画板,可以给学生一个“操作数学”的过程、一次“实验数学”的机会、开展“动态数学”的活动。
【关键词】:几何画板体会
【正文】
新大纲明确指出“现代技术的使用将会深刻地影响数学教学内容、方法和目标的改变”。多媒体计算机的出现、网络技术的运用、信息时代的来临,正在给教育带来深刻的变化,教育技术的更新的同时也更新了教学手段和教学方法。
目前,信息技术在数学教学中的应用开展得如火如荼,以多媒体技术为中心的信息技术与学科教学的整合,是信息技术的迅速发展及广泛应用的必然结果。计算机多媒体在教学中的应用,因其固有的优势和特色,使其在教学中显示了强大的生命力,发挥了不可替代的作用。但是多媒体技术的应用主要还停留在教师制作课件、学生接受学习的层面上,在运用信息技术开展数学研究性学习方面做得相对不足,其原因是一般的软件如powerpoint,authorware、flash、3dsmax等在数学教学应用中的针对性不是很强,教师应用很不方便,更不用说学生了。
几何画板是一种适合数学教学的简单工具,教师只要在开始的时候利用几节课或兴趣小组活动中教会学生使用几何画板的基本功能和数学内涵,上数学课(特别是函数、几何课)的时候学生自己动手分析会产生意想不到的效果,学生使用几何画板的过程和物理化学中的学生实验类似:物理化学实验有演示实验、学生实验,用几何画板可以教师演示(传统的课件),也可以学生实验,自己探索(信息技术和数学课程整合)。
一、利用《几何画板》,给学生一个“操作数学”的过程
《几何画板》是美国keycurriculumpress公司制作的优秀教育软件,在教师的引导下,《几何画板》可以给学生创造一个实际“操作”几何图形的环境,学生可以任意拖动图形、观察图形、猜测和验证结论,在观察、探索、发现的过程中增加对各种图形的感性认识,形成丰厚的几何经验背景从而更有助于学生对数学的学习和理解,同时《几何画板》还能为学生创造一个进行几何“实验”的环境,有助于发挥学生的主体性、积极性和创造性,充分体现了现代教学的思想。
一年多来,我们备课组开始开展了以《几何画板》为平台,培养学生自主学习、探究学习的实验。几位数学老师利用课余时间认真学习《几何画板》的操作,同时对学生进行培训并编写了《几何画板》教案,指导学生学习《几何画板》。我们从制作课件进行讲解、演示一次函数、四边形等课本知识开始,到后来的学生自己利用《几何画板》中的“作图”、“变换”、“度量”、“编辑”等功能,制作具有动感的几何图形和函数曲线进行自主探究学习,我们感到学生的潜力是无穷的,关键在于挖掘,只有老师努力去挖掘,才能使学生的才智成金。如:对二次函数图象的变换等内容的教学,我们基本上都是在学生自己利用《几何画板》这样一个动态几何环境进行探究、讨论、总结完成学习任务的。这使我们看到了学生们的自主探究的能力,让我们感到惊喜,也使我们有所反思:“教无止境”!
二、利用《几何画板》,使学生有一个“实验数学”的机会
经过对学生的培训,让学生们掌握《几何画板》,并且我们利用晚自习时间,在网络教室上课,使学生们直接参与课堂教学,动手在操作中学数学,这是一种新的教学模式。这种教学模式,不再有老师滔滔不绝地讲,代之以学生动手“做数学”,老师负责学习的组织、指导学生研究问题、帮助学生学习,成为学生学习的帮助者,学生成为学习的主人。
如我们在网络教室中曾经教过二次函数等内容,收到良好的效果。在这种“实验数学”的`教学模式下,不是先有数学的结论,而是使数学的结论来源于学生的制作、对现象的观察、对数据的统计与分析、对各种情况的归纳总结。这打破了传统的“教师讲授─学生模仿─强化记忆─测试讲评”的教学模式,改变为“问题─实验─观察─分析─结论─验证─练习─回顾”的新模式,课堂上学生自始至终保持着浓厚的学习兴趣,不再把学习数学看成负担,增强了学好数学的信心。学生动手操作,使实践能力、观察能力、归纳能力等都得到很好的锻炼,教学效果也比较好。
三、利用《几何画板》,让学生开展“动态数学”的活动
《几何画板》是一个动态讨论问题的工具,对发展学生的思维能力、开发智力、促进素质教育有着不可忽视的作用,用《几何画板》与学生共同探讨问题,探求未知的结论,可以开阔思路,培养能力,提高数学素养。
如在讲解一道关于从一点a出发,到河边取水,再到b点,如何走路径是最短的(如右图)?该题如果单凭黑板讲,是不够生动的,大多学生也不好理解,但运用几何画板,学生就好理解了。因为几何画板是动态的,可以在表示河边的线上取一点c,计算出ac+bc的长度,随着拖动c点,数据也会随之发生改变,学生也就很容易定出是哪一点距离最短的,教师再引导学生通过用作轴对称图形的方法,学生自然很容易理解并掌握该类题型的解题规律。电脑屏幕上直观、形象的动态几何环境,通过学生们自己动手操作,得到最终的结果后,同学们都十分兴奋,取得了良好的教学效果。
通过实践我们深深地体会到:《几何画板》在数学教学中具有传统教学方法无法比拟的巨大优势,只要我们能在平常的数学教学中主动、自觉地应用《几何画板》为教学服务,就能更好地培养学生自主学习、探究问题的能力,就能激发和调动学生进行学科学习的积极性,就能把学生从庸俗的电脑游戏中解脱出来,利用电脑为自己的学习服务。《几何画板》作为一个学生自主学习的平台,必将为学生的自主学习、探究学习提供一个广阔的空间,成为培养学生创新思想的实践园地。
参考文献:
1、《全日制义务教育数学课程标准(实验稿)》北京师范大学出版
2、《几何画实用范例教程》清华大学出版社
3、《信息技术与学科教学整合》李姓克东北京:万方数据电子出版社
4、《信息技术与课程整合》孙杰远北京:北京大学出版社
5、《数学课程改革的核心:改变学生的学习方式》申建春
中学数学几何画板课件篇十一
略谈几何画板应用于数学学科教育研究论文
关键词:运动过程数学现象抽象具体兴趣
信息技术日新月异,必然会引起社会很多方面的深刻变化,对教育的各个方面也产生了无法估量的巨大影响。如何迎接这个挑战,用信息技术改进我们的教育工作,是我们面临的任务,开展多媒体技术与课程的整合是其中的一个重要方面。经过多方面的探索,我们感到应用“几何画板”与数学学科进行整合,是一个很好的突破口。
“几何画板”是教育部全国中小学计算机研究中心向全国中小学数学、物理教师推荐的优秀教学软件,能在动态变化中保持给定的几何关系,学习、掌握这个软件比较容易,用它制作课件比较简单,既有利于教师制作,也有利于学生进行数学实践与探索,拓宽了创造性学习的渠道。
一、有目的地使用“几何画板”,解决数学教学中的难点
传统的教学方法,经过无数教师的努力,有很多成功的经验,有很好的效果。其中有一些经验在信息时代也可能不会被替代,甚至发扬光大。多媒体技术与课程的整合则应当有目的和更有效的解决传统教学中,无法解决或解决不好的一些问题。
1.表现空间图形的不同观察角度
“几何画板”能制作出由操作者控制视角的各种立体几何图形,使学生能从任何方向来观察它们及这些几何体上的线段与截面,在让学生观察实物的基础上,再调用这些课件,学生都能看到这些可动态变化的几何体,不仅看得比较清晰,而且能多角度进行观察,弥补了实物观察时的不足之处,又能在实物与图形之间建立了一个中间环节,更有利于对空间图形的想象,这对逐步提高学生的空间想象能力是极好的教具与学具。
2.表现两个变量之间形象的函数关系
例如:“已知矩形abcd,ab=4厘米,bc=3厘米,点p为折线bcd上任意一点,设ap与矩形abcd所围成的三角形面积是s平方厘米,从点a沿矩形周界且经过点b(或再经过点c),到p的距离是x厘米,试用解析式将s表示成x的函数。”我们能用“几何画板”画出ap与矩形abcd所围成的三角形,三角形面积会随着p点在矩形周界上运动而变化,在“几何画板”中还能度量出p点的运动距离x与三角形面积s,这些度量值会随着p点的运动而改变,还能显示出s与x函数图象。使“运动”进入数学能生动地表现出来。
3.表现几何图形性质的普遍意义
几何性质是具有普遍意义的,但我们只能从个别、具体的例子入手学习。应用“几何画板”制作课件,较好的解决了这个矛盾。“几何画板”制作的课件能让每个具体的图形运动起来,而且在这个运动的过程中,能保持给定的几何关系。例如:在探究“三角形三条中线交于一点。”这个性质时,我们在一个三角形中作出两条中线之后,再作第三条中线正好经过这两条中线的交点。为了说明这个性质的普遍意义,可再制作一个“动画”按钮,或拖动三角形的顶点,使三角形运动变化,但在变化过程中,这三条中线始终交于一点。这样学生对任何一个三角形都具有这个性质,有很深的印象。
4.表现的事物抽象性,和抽象理论的具体性
广泛的应用性与高度的抽象性是数学的特点,也是学生产生兴趣与学习的难点所在,解决好数学的抽象性问题,是帮助学生克服难点,提高兴趣的关键。在小学“图形的认识”这节课中,用“几何画板”制作的课件,向学生展示的红领巾、手帕等实物,可以移去红色、花纹、布料等非研究对象,从中抽象出三角形、四边形等图形,提高学生的抽象思维能力。如果讲低年级的学生主要是从具体到抽象的过程,那么高年级学生主要是用具体的形象来帮助他们理解抽象的理论,例如:人们在几何教学中常讲“点动成线,线动成面,面动成体。”但同学不一定真正理解这句话的含义。于是我们制作一个课件,来演示一个点运动后变成一条线段,一条线段运动后转化成一个矩形,一个矩形运动转化成一个长方体的过程,使学生对抽象的事物有个感性的认识作为理论的基础。
5.表现各种数学现象的运动过程
物体的运动过程用语言与文字很难表达清楚,但用图形能达到一种新的意境。例如:椭圆是用轨迹来定义的,而轨迹是用运动来表现的,我们用“几何画板”制作了到两个定点距离之和为定值的一个动点,并度量出这个动点到两个定点之间的距离,再计算出这两个距离之和,在这个课件中学生能清晰看到动点的运动轨迹,对椭圆轨迹留下鲜明的印象。
二、在学生中开展学习“几何画板”活动,提高学生的计算机的`应用能力及实践与创新的能力
1.“几何画板”是学生进行数学实验的重要工具
现在的数学教学不仅要培养学生计算、演泽等具有根本意义的严格推理的能力,还培养学生预感试验,尝试归纳、“假设——检验”、简化然后复杂化,寻找相似性等非形式推理或似真推理的能力。只有这样,数学课程的创造性气质才算提高。实验方法在数学科学中的作用愈来愈被重视,除了直接观察、假想试验,统计抽样和计算机迭代、数字仿真等方法也日益被采用,成为发现、创造的重要杠杆。而“几何画板”的使用,使学生进行数学实验多了一件有用的工具,使得在课堂上让每个学生进行数学实验成为可能。这种数学实验,对学生主体意识的形成,主动参与数学实践本领的提高,自行获取数学知识的能力培养,都将发挥作用。
例如:为了判定垂心在三角形中的位置,我们让学生在一个三角形中作出垂心,然后让三角形任意变换(这在“几何画板”很容易做到),学生观察了无数个三角形与它的垂心,从中发现不同类型的三角形的垂心的不同位置,概括出垂心在直角、锐角与钝角三角形中的位置特征。
2.“几何画板”列入校本课程是一种明智的选择
为了有效地在数学教学中让学生主动参与数学实践,培养学生自行获取数学知识的能力,我们学校为学生开设了“几何画板”这门课,作为我们的校本课程。在学习过程中,寓教于乐,学生不仅掌握了“几何画板”的使用,而且在学习过程中提高了对一些重要数
学概念的认识——如对函数的认识,提高多方面的能力——如探究问题,解决问题的能力。
3.组织学生用“几何画板”开展探究性学习活动中应注意的几个问题
经过组织学生自主探究学习,我感到要有效的开展这项活动,教师还要注意以下几个问题:⑴学生对“几何画板”操作要有一定的水平,否则学生会因为“几何画板”操作不熟悉而影响了对问题的探究;⑵教师要认真设计一个探究的过程,即把一个大的目标分解成几个具体的小目标,使学生有个逐步提高的过程,开始的时间可以设计得细一点,学生达到一定水平之后,各个目标之间的跨度可大一点,并要注意这个过程的创造性成份;⑶教师既要有目标导向,又要放手让学生自己创造,培养学生的创新精神。
4.用“几何画板”开展探究性学习活动提高了学生的创新和实践能力
用“几何画板”开展探究性学习活动大大转变了教师的教学方式和学生的学习方式,促进了学生创新和实践的能力,产生了师生互动的生动教育局面。
例如对下面一个问题,我们作了这样一个尝试:
已知:p(2,3),q(4,1)在x轴上求一点m,使|mp|-|qm|最大。
学生由于受函数学习的影响,提出如下解法:设m的坐标为(x,0),则,至此,学生就无法解下去了。
这时我们让学生打开“几何画板”,作出图形,并度量出有关的量(见图一)。
再让学生在x轴上拖动m点,各种度量值(图一)也随着m点的变化而变化,由于在画面上可看|pm|-|qm|的值,因此学生很快发现,当m在pq延长线上时(见图二),|pm|-|qm|最大。经过这样自主的探究学生很快找到解题的方法。可喜(图二的是经过多次练习,这种探究活动已成为学生学习的自觉行动与有效方法。
又例如:我们经常用“几何画板”解决一些带有参数的函数问题,如“f(x)=ax(a>0,a≠1),g(x)=bx(b>0,b≠1),比较这两个函数值的大小。”“已知y=ax2+bx,当a>0,b<0时,顶点p在第几象限;当b∈(-∞,∞)时,点p的轨迹是什么?”这类问题,虽然题目各不相同,但在“几何画板”中的探究过程却几乎是一致的,做多了,有的学生对用“几何画板”探究这类带有参数的函数问题进行归纳、建模:⑴建立参数;⑵建立带有参数的函数;⑶作出函数图象,⑷改变参数,观察函数图象的变化,探究性质;⑸验证或证明探究所得到的性质,或举例否定这个性质。用“几何画板”开展探究性学习活动,通过学生自身的操作和主动参与,学生发现问题和解决问题,创新和实践能力提高迅速我始料不及的。
5.开展学习“几何画板”活动,提高了学生应用计算机的意识和能力
学习“几何画板”,不仅有利于数学教学,而且也有利于信息科技的学习。由于“几何画板”与学生的学习生活有紧密的联系,学生学习了“几何画板”,使计算机成为学生学习中的工具而经常使用,这将提高学生在学习、生活中应用计算机的意识,也将有效的提高学生计算机的应用能力。
三、解决师资培训工作中的问题,提高教师对“几何画板”使用水平,促进多媒体与课程的整合向更广阔、更深入的层次发展。
经过多年努力,我们学校在数学教学中使用“几何画板”取得一定成果。在教师培训工作中,教师向我们提出很多问题,促进我们去思考、学习,并与广大教师一起探究,促进了多媒体技术与课程的整合工作向更广阔,更深入的层次发展。
1.解决教师在操作、应用中的困难
在师资培训中广大教师涌跃参加,并努力用于教学实践。教师在学习中也会发生类似于学生学习中的一些操作性困难,这些困难通过讲解、帮助就可以解决。在教师培训中我们发现教师们碰到的与学生的困难有不同之处,新的困难是教师自已根据教学要求,制作课件时碰到的困难,这实际是对课件结构分析的困难,于是我们及时调整培训内容,增加对课件结构的分析,帮助教师提高自己对课件的设计能力,制作出符合自己教学要求的课件。
2.解决“几何画板”与其它软件综合应用问题
在培训中老师们提出的有些问题,超过了人教社编写的《几何画板用户指南》与全国中小学计算机教育研究中心编写的《几何画板参考手册》中包含的内容,例如:“如何在powerpoint中调用几何画板?”为此我们查阅了一些资料,找到了解决的方法——在powerpoint的幻灯片中制作调用按钮。虽然这看似一个不大的问题,但这个问题解决,将综合发挥这两个软件的长处,有利于教师根据教学的要求,制作出更好的课件。
3.探究新版软件的应用
在使用“几何画板”制作课件的过程中,老师们还向我们提出了另一类问题。例如:能不能控制运动速度;能不能让各个几何对象一个接着一个运动,而不是所有几何对象一起运动等问题。而这些问题正是我们想解决,但在目前“几何画板”中无法解决的问题。如果这些问题能够解决,“几何画板”将能制作更多适合课本要求的课件,但我们知道,3.05版“几何画板”不具有这些功能。我们在网上与同行探讨发现网上有新的4.03版“几何画板”,经过多次努力我们从网上下载成功。虽然新版“几何画板”无帮助文件,市场也没有这版本的操作手册,于是我们一方面从网上寻找,求助于网友们的点滴经验体会,另方面自己进行尝试探究新的功能,经过努力,老师提出的几个问题竟然都找到了解决的方法,还发现了新版软件中新增加或加强的一些功能。如数学符号的编辑功能、建立参数的功能、建立函数与制作函数图象的功能、分页功能等,为了使大家能使用这些功能,我们把新发现的功能进行整理,按“功能介绍”、“案例”、“操作步骤”几个栏目编印成讲稿,介绍给大家。进一步发挥了“几何画板”的作用。现在我们很多同行都迫切希望得到新版“几何画板”的汉化的正版软件与相关操作资料,相关部门如能做好这件事,实际上是为多媒体技术与课程整合作出了贡献。
中学数学几何画板课件篇十二
证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
证明两个角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等
证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
中学数学几何画板课件篇十三
浅谈几何画板在数学教学中的优点教育论文
摘要:在中学数学教学中利用《几何画板》辅助教学,可以创设更富有启发性的教学情境,设计学生动手做数学的实验环境,能灵活自如地进行变式教学,提高课堂教学效果。
关键词:形象化 动态化 整合化 思维能力
《几何画板》是目前应用最为广泛的一个几何学教学软件。几何画板最初只应用于几何学和物理学等学科的教学。现在得到广大中学数学教师和学生喜爱。它利用“几何元素在动态状态下保持几何关系间的不变性”这一原理,为平面几何、解析几何、射影几何等学科提供了一个强有力的教学辅助工具。
一、《几何画板》软件辅助数学教学的优点
1.形象化:《几何画板》是探索数学奥秘的强有力的工具,利用这个画板可以做出各种神奇的图形。比如制作动态正弦波、各种函数曲线和数据图表等。教学中若使用常规工具(如纸、笔、圆规和直尺)画图,画出的图形是静态的,很容易掩盖一些重要的几何规律。而使用几何画板,可以画出有几何约束条件的几何图形。另外,《几何画板》可以在图形运动中动态地保持几何关系,可以运用它在变化的图形中发现恒定不变的几何规律。比如用画点、画线工具画出一个三角形后,作出它的三条角平分线、中线、中垂线,可以用鼠标任意拖动三角形的顶点和边,就可以得到各种形状的三角形,这个动态的演示,也可以用于验证“无论三角形如何变化,其三条中线总是交于一点”。
2.动态化:利用《几何画板》运动按钮——“动画”和“移动”功能经过巧妙的组合后,所制作出的点、线、面、体都可以在各自的路径上以不同的速度和方向进行动画或移动,可以产生良好、强大的动态效果,并且所度量的角度或线段的长度及其他的一些数值也可以随着点、线、面、体的运动而不断地发生变化,非常接近于实际,可以更好地达到数形结合,给学生一个直观的印象,起到良好的教学效果。
3.整合化:随着信息技术的发展,涌现出了powerpoint、f1ash、authorware、visualbasic以及几何画板等一些对促进数学教学有着很大的作用的软件,为信息技术与数学课程的整合提供了有效的平台。然而作为课件创作人员,使用单一的制作软件开发教学软件总是存在不足。数学课件的制作中可以使多种软件整合使用,几何画板可被flash调用、authorware调用、powerpoint调用。
二、几何画板在培养学生的能力方面的优势
几何画板的很多不同于其他绘图软件的特点为教学过程中提出问题、探索问题、分析问题和进一步解决问题提供了极好的外部条件,为培养学生的能力提供了极好的工具。
1.培养学生的思维能力。在教师精心的设计下,恰当地利用《几何画板》的演示,协助学生思考而不是代替学生思考,可促进学生思维的发展。在椭圆的离心角的教学中,椭圆的半径为终边的角与椭圆离心角容易混淆。若利用《几何画板》,不仅可以使学生把这两个角的关系辨析清楚,而且电脑动态显示的优势抓住了时机,有助于发展学生的思维能力。
2.培养学生的探索、观察能力。“探索是数学的生命线”。用《几何画板》进行探索思考、观察,使学生的想象力得以发挥,其显示功能通过动态的演示轨迹,增强学生感性认识,化抽象的事物为具体的事物。
3.解决许多带参数的轨迹问题,培养学生分类讨论的能力。在画板的帮助下很多需要分类讨论的带参数的问题变得简单,让学生们在思考过程中“兴奋”起来,学生对参数的改变引起轨迹的变化的认识也就更深刻了,分类讨论的思想迎刃而解。
4.培养学生解决实际应用问题的能力。应用的广泛性是数学的又一特点,数学教学中注重应用。应用题往往难在对实际问题的数学化。而运用画板进行辅助教学将易于揭示其数学本质,有助于增强学生的数学应用能力。
总之,在中学数学教学中利用《几何画板》辅助教学,可以创设更富有启发性的教学情境,设计学生动手做数学的实验环境,能灵活自如地进行变式教学,提高课堂教学效果;还可以启发学生更积极地思考,引导学生自己发现和探索?使教师的“讲”更多地由学生积极参与的活动所代替。学生由“听讲”“记笔记”的被动学习方式更多地变为观察、实验和主动、积极的学习方式,从而达到知识、能力和素质的全面提高。
参考文献:
1.高荣林主编.几何画板课件制作与实例分析.北京:高等教育出版社,.
2.张献国.利用几何画板培养学生能力.兵团教育学院学报,.02.
中学数学几何画板课件篇十四
摘要:在初中数学的学习中,几何一直是大多数学生的难题,那么学习几何到底有没有捷径呢?我们又应该怎样来学习几何呢?
关键词:初中几何;学习方法;探讨
初中几何是初中阶段学习的难点.也是学习的重点,由于小学所接触的几何知识过于公式化,逻辑思维不强,而进入初中以后,几何知识就较抽象,需用大量的公理定理来加以推导,逻辑思维强,解决方法灵活多变!因此学生在学习这部分知识时就感觉困难.久而久之就失去学习的信心.对此不感兴趣,到后来破坛子破摔,不努力、成绩差,根据这几年来的教学经验和体会我总结出了以下几种激发学生学习的方法。
1.树立信心
信心是做任何事成功的前提,没有信心,任何事都不能成功,因此在教学之前先要对学生进行树信心教育,第一,开一次讲座会,讲明学习几何的重要性,明确它在初中乃至整个数学领域的重要性,使之明确几何知识是教学领域中不能缺少的.也是提高数学成绩的关键;第二,谈一次体会,听完讲座后,要让学生谈一谈对几何知识的认识,把学习几何的热情提起来,发言气氛要浓;第三,写一份计划,根据自己的实际写份切实可行的计划.不一定要详细,只要订出完成什么任务,达到什么目的就可以了。
2.联系实际
初中几何以推理为主,学生理解较困难.讲解叫尽量贴近生活联系实际,这样学生易理解,看得见.摸得着,使之能懂愿意学,当然并不是每节都能与生活联系起来,因此需要教师精心设汁课堂教学,使学生觉得亲切易懂,轻松感兴趣。
3.巧解疑问
疑是思维的开端,是创造的基础.是产生求知欲望和兴趣的源泉,在教学中要善于利用已有知识来巧设疑问,激励学生的求知欲,使之积极思考,积极探索,迫切得到结果,在讲解过程中也要不断提问,不断设疑,使之始终处于欲望中,激发灵感,寻找解决问题的办法。
4.适时的激励
适时的激励对学生来说是一剂好的药方,很多时候,教师的一句激励,胜过其自身的多日努力. 在初中平面几何学科的教学中笔者积极探索激励性教育,发现激励性教育在几何教学中能起非常重要的作用. 运用之中,教与学将是一片阳光明媚.
5.手工折纸
折纸是一项学生比较熟悉的手工活动,很多学生都尝试过把一张纸折叠成不同的形状的图形,但是他们还不知道其中所包含的几何知识。 在课堂上教师可以先示范折纸的每一个动作,并明确指出其中所包含的几何知识,然后再让学生亲自动手,学生就容易体会得到,原来他们十分熟悉的简单动作中就包含了不少几何知识,《几何》这门学科并不难学。
6.拼搭图形
让学生自己动手拼搭各种图形,可以增强对图形感性认识,培养空间观念。
比如,先让学生剪好两块同样大小的直角三角形,教师通过示范,把这两块直角三角形拼合成一个平行四边形,然后由学生自己动手采用不同的拼合方法,看看还可以拼出什么形状的图形。学生将拼合出等腰三角形,长方形,另一种形状的平行四边形。在这个过程中,学生不仅感知到各类图形的结构,而且不知不觉地接触、了解了图形拼合的思想方法。
7.说理与证明
“几何难,难在证明”,这是大多数学生的共识,也是产生畏难情绪的主要原因。所以,我认为。在起始阶段的教学中,应该让学生初步了解“证明”是怎样一回事,以便消除学生对几何的畏惧心理,为顺利过渡到推理论证的教学作好铺垫。在教学设计上,应在学生已有知识经验的基础上进行。比如,
可以从 等于多少?引入,我是这样设计的:
师: 等于多少?
生:等于 。
师:你们怎么知道等于 呢?
生:因为 。
师: 根据什么?
生:根据分数的基本性质;分子,分母都乘以同一个不为零的数、分数的值不变。
师: ,根据什么?
生:根据同分母分数加法法则,即同分母的两个分数相加,分母不变,分子相加。
师:我刚才提出的问题,同学们都回答得很好,这说明同学们已初步具备了证明的能力。
到此,同学们会感到惊奇:“怎么?我们从没学过证明,老师说我们已具备了证明的能力!”证明“这个问题,原来并没有我们以前想象的那么神秘”。
师:对,同学们已经说出了 的理由,说明你们已经会证明这个问题了。如果把刚才的问题改成“证明 ”,这就是一个征明题,刚才你们的回答,就是对这个问题的证明。
此时,学生便豁然开朗:“哦!原来证明就是说理由找根据”。对于学生得出的这个结论,教师应给予充分肯定:“对,证明就是说理由找根据,不过几何中的证明要遵循一些规则,待同学们学了这些规则后,就会顺利地做证明题了”。
象上面那样设计教学,生动有趣、浅显易懂,学生会觉得几何中的证明原来并不难,学习的兴趣就被激发出来了。
8.合作学习
合作学习是培养创新精神、交际能力和合作精神,提高学生自尊心、学习的自信心,激发学习动机的途径,把一些值得争辩,探讨质疑的问题,学生需要交流的问题,通过开展合作学习来完成,主要以组别、性格、性别、成绩差异,能力高低来分组,做到分工合作.责任明确,
任务明确,这样激发了他们的积极性和主动性,又培养了交流能力和合作能力。
总之,兴趣是平面几何入门教学的先导,在入门阶段的教学上,教师要充分挖掘教材的趣味性,通过各种途径去调动学生学习的积极性,使他们对平面几何产生浓厚的兴趣,树立学好平面几何的信心。